A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Addressable superconductor integrated circuit memory from delay lines. | LitMetric

Addressable superconductor integrated circuit memory from delay lines.

Sci Rep

Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI, 48109, USA.

Published: October 2023

Recent advances in logic schemes and fabrication processes have renewed interest in using superconductor electronics for energy-efficient computing and quantum control processors. However, scalable superconducting memory still poses a challenge. To address this issue, we present an alternative to approaches that solely emphasize storage cell miniaturization by exploiting the minimal attenuation and dispersion properties of superconducting passive transmission lines to develop a delay-line memory system. This fully superconducting design operates at speeds between 20 and 100 GHz, with ± 24% and ± 13% bias margins, respectively, and demonstrates data densities in the 10s of Mbit/cm with the MIT Lincoln Laboratory SC2 fabrication process. Additionally, the circulating nature of this design allows for minimal control circuitry, eliminates the need for data splitting and merging, and enables inexpensive implementations of sequential access and content-addressable memories. Further advances in fabrication processes suggest data densities of 100s of Mbit/cm and beyond.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10547841PMC
http://dx.doi.org/10.1038/s41598-023-43205-8DOI Listing

Publication Analysis

Top Keywords

fabrication processes
8
data densities
8
addressable superconductor
4
superconductor integrated
4
integrated circuit
4
circuit memory
4
memory delay
4
delay lines
4
lines advances
4
advances logic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!