Rat diet-induced obesity and metabolic dysregulation (DIO/DIMD) is widely used as a pre-clinical model for human obesity and for testing weight-loss interventions. The aim of this review was to utilise a systematic literature survey of rat DIO/DIMD studies as a tool to document trends around study design and metabolic outcomes of these studies, and to consider ways in which the design of these studies may be improved to enhance the relevance thereof for human obesity research. In total, 110 comparisons between control and obesogenic dietary groups were included in the survey. Young male rats were found to be the model of choice, but fewer than 50% of studies provided comprehensive information about diet composition and energy intake. In addition, it was found that the majority of expected DIO/DIMD responses (hyperglycemia, hyperinsulinemia, dyslipidemia, hypoadiponectinemia) occurred at <Â 80% frequency, drawing into question the concept of a "typical" or "appropriate" response. We discuss the impact of differences in diet composition and energy intake on metabolic outcomes against the context of large heterogeneity of obesogenic diets employed in rat DIO/DIMD studies, and provide recommendations for the improvement of reporting standards around diet composition and dietary intake. In addition, we highlight the lack of data from female and older rats and describe considerations around the inclusion of sex and age as a variable in rat DIO/DIMD studies, aiming towards improving the applicability of these studies as a model of human obesity, which is most prevalent in women and older individuals.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.orcp.2023.09.010 | DOI Listing |
Mol Med
December 2024
Disease Prevention and Health Management Center, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310006, Zhejiang, China.
Background: Nonalcoholic fatty liver disease (NAFLD) has developed as a leading public wellness challenge as a result of changes in dietary patterns. Unfortunately, there is still a lack of effective pharmacotherapy methods for NAFLD. Wang's empirical formula (WSF) has demonstrated considerable clinical efficacy in treating metabolic disorders for years.
View Article and Find Full Text PDFJ Gastroenterol Hepatol
December 2024
Department of Nutritional Sciences, University of Connecticut, Storrs, Connecticut, USA.
Aim: The goal of this study was to determine the role of histone deacetylase 9 (HDAC9) in the development of diet-induced metabolic dysfunction-associated steatohepatitis (MASH) and white adipose tissue (WAT) dysfunctions.
Methods: We fed male and female mice with global Hdac9 knockout (KO) and their wild-type (WT) littermates an obesogenic high-fat/high-sucrose/high-cholesterol (35%/34%/2%, w/w) diet for 20 weeks.
Results: Hdac9 deletion markedly inhibited body weight gain and liver steatosis with lower liver weight and triglyceride content than WT in male mice but not females.
Metabolites
December 2024
Food Functionality Research Division, Korea Food Research Institute, Jeonju 55365, Republic of Korea.
: Dietary patterns, including high-fat and high-carbohydrate diets (HFDs and HCDs), as well as non-dietary factors such as food additives and antibiotics, are strongly linked to metabolic endotoxemia, a critical driver of low-grade chronic inflammation. This review explores the mechanisms through which these factors impair intestinal permeability, disrupt gut microbial balance, and facilitate lipopolysaccharide (LPS) translocation into the bloodstream, contributing to metabolic disorders such as obesity, type 2 diabetes mellitus, and inflammatory bowel disease. : The analysis integrates findings from recent studies on the effects of dietary components and gut microbiota interactions on intestinal barrier function and systemic inflammation.
View Article and Find Full Text PDFDiabetes Obes Metab
December 2024
Department of Rehabilitation, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
Aims: Hypothalamic endoplasmic reticulum stress (ERS) and mitochondrial dysfunction are two important mechanisms involved in the pathophysiology of obesity, which can be reversed by aerobic exercise to improve organ function. Mitofusion 2 (Mfn2), a mitochondrial membrane protein, affects both mitochondrial dynamics and ER morphology. This study explored the contribution of hypothalamic Mfn2 to exercise-induced improvements in energy homeostasis and peripheral metabolism and the underlying mechanisms involved.
View Article and Find Full Text PDFJ Lipid Res
December 2024
Department of Endocrinology and Metabolism, Shunde Hospital of Southern Medical University (The First People's Hospital of Shunde Foshan), Foshan, Guangdong Province, China. Electronic address:
High-fat diet (HFD) -induced microglial activation contributes to hypothalamic inflammation and obesity, but the mechanisms linking microglia to structural changes remain unclear. This study explored the role of microglia in impairing hypothalamic synaptic plasticity in diet-induced obesity (DIO) mice and evaluated the therapeutic potential of semaglutide (Sema) and minocycline (MI). Six-week-old C57BL/6J mice were divided into low-fat diet (LFD) and HFD groups.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!