Download full-text PDF

Source
http://dx.doi.org/10.1136/heartjnl-2023-323210DOI Listing

Publication Analysis

Top Keywords

understanding driving
4
driving mechanisms
4
mechanisms bioprosthetic
4
bioprosthetic valve
4
valve degeneration
4
understanding
1
mechanisms
1
bioprosthetic
1
valve
1
degeneration
1

Similar Publications

The cis-regulatory elements encoded in an mRNA determine its stability and translational output. While there has been a considerable effort to understand the factors driving mRNA stability, the regulatory frameworks governing translational control remain more elusive. We have developed a novel massively parallel reporter assay (MPRA) to measure mRNA translation, named Nascent Peptide Translating Ribosome Affinity Purification (NaP-TRAP).

View Article and Find Full Text PDF

The survival of B cells is compromised in kidney disease.

Nat Commun

December 2024

Division of Rheumatology and Clinical Immunology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.

Antibody-mediated protection against pathogens is crucial to a healthy life. However, the recent SARS-CoV-2 pandemic has shown that pre-existing comorbid conditions including kidney disease account for compromised humoral immunity to infections. Individuals with kidney disease are not only susceptible to infections but also exhibit poor vaccine-induced antibody response.

View Article and Find Full Text PDF

Environment-Organism Feedbacks Drive Changes in Ecological Interactions.

Ecol Lett

January 2025

Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland.

Ecological interactions are foundational to our understanding of community composition and function. While interactions are known to change depending on the environmental context, it has generally been assumed that external environmental factors are responsible for driving these dependencies. Here, we derive a theoretical framework which instead focuses on how intrinsic environmental changes caused by the organisms themselves alter interaction values.

View Article and Find Full Text PDF

R3Design: deep tertiary structure-based RNA sequence design and beyond.

Brief Bioinform

November 2024

AI Lab, Research Center for Industries of the Future, Westlake University, Zhejiang 310058, China.

The rational design of Ribonucleic acid (RNA) molecules is crucial for advancing therapeutic applications, synthetic biology, and understanding the fundamental principles of life. Traditional RNA design methods have predominantly focused on secondary structure-based sequence design, often neglecting the intricate and essential tertiary interactions. We introduce R3Design, a tertiary structure-based RNA sequence design method that shifts the paradigm to prioritize tertiary structure in the RNA sequence design.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!