Direct and mediated electrolysis of the protein plastocyanin at a gold filar electrode is described. The filar electrode used is of a unique design that allows potentiometric measurements, steady-state voltammetry and absorption spectrophotometry to be performed on a few microliters of solution containing 0.1-1.0 mM protein. As a result, we have determined the formal potential and diffusion coefficient of the blue copper protein, plastocyanin, to be 372 +/- 5 mV vs. normal hydrogen electrode and 8.9 X 10(-7) cm2 X s-1, respectively. The same value of the formal potential is obtained from a steady-state current experiment, an equilibrium spectrophotometric experiment, and a twin-electrode steady-state spectrophotometric experiment. The fact that the diffusion coefficient is measured under conditions of steady-state current, results in significant improvement in signal to background over techniques that monitor a transient current, while the potential is changing.

Download full-text PDF

Source
http://dx.doi.org/10.1016/0005-2728(86)90232-xDOI Listing

Publication Analysis

Top Keywords

diffusion coefficient
12
protein plastocyanin
12
potential diffusion
8
filar electrode
8
formal potential
8
steady-state current
8
spectrophotometric experiment
8
determination redox
4
potential
4
redox potential
4

Similar Publications

Spin Drag Mechanism of Giant Thermal Magnetoresistance.

Phys Rev Lett

December 2024

Department of Physics, University of Washington, Seattle, Washington 98195, USA.

We study hydrodynamic thermal transport in high-mobility two-dimensional electron systems placed in an in-plane magnetic field and identify a new mechanism of thermal magnetotransport. This mechanism is caused by drag between the electron populations with opposite spin polarization, which arises in the presence of a hydrodynamic flow of heat. In high mobility systems, spin drag results in strong thermal magnetoresistance, which becomes of the order of 100% at relatively small spin polarization of the electron liquid.

View Article and Find Full Text PDF

Quantitative 3-T Multiparametric MRI Parameters as Predictors of Aggressive Prostate Cancer.

Radiol Imaging Cancer

January 2025

From the Departments of Radiological Sciences (D.H.S.K., I.S., V.M., W.H., K.H.S., D.S.L., S.S.R.), Medicine Statistics Core (T.G.), Pathology (A.S.), and Urology (R.E.R., S.S.R.), David Geffen School of Medicine at UCLA, 885 Tiverton Dr, Los Angeles, CA 90095.

Purpose To determine which quantitative 3-T multiparametric MRI (mpMRI) parameters correlate with and help predict the presence of aggressive large cribriform pattern (LCP) and intraductal carcinoma (IDC) prostate cancer (PCa) at whole-mount histopathology (WMHP). Materials and Methods This retrospective study included 130 patients (mean age ± SD, 62.6 years ± 7.

View Article and Find Full Text PDF

Hepatocellular carcinoma (HCC) ranks fourth in cancer-related mortality worldwide. This study aims to uncover the genes and pathways involved in HCC through network pharmacology (NP) and to discover potential drugs via machine learning (ML)-based ligand screening. Additionally, toxicity prediction, molecular docking, and molecular dynamics (MD) simulations were conducted.

View Article and Find Full Text PDF

Electride transition in liquid aluminum under high pressure and high temperature.

J Chem Phys

January 2025

Key Laboratory of Efficient Low-carbon Energy Conversion and Utilization of Jiangsu Provincial Higher Education Institutions, School of Physical Science and Technology, Suzhou University of Science and Technology, Suzhou 215009, China.

Despite the conventional view of liquid aluminum (l-Al) as a simple metal governed by the free-electron model, it exhibits unique bonding characteristics. This study uncovers a gradual transition from free electron to electride behavior in l-Al at high pressure and temperature, forming a type of two-component liquid where atomic and electride states coexist. The proportion of electride increases with pressure and temperature until reaching saturation, leading to notable changes in the pair-correlation function and coordination number of l-Al at saturation pressure.

View Article and Find Full Text PDF

The adsorption and aggregation of amphiphiles at different solvent interfaces are of great scientific and technological importance. In this study, interfacial tension measurements of surface-active compounds-ionic liquid 2-dodecyl-2,2dimethylethanolammonium bromide (12Cho.Br) and cationic surfactant cetyltrimethylammonium bromide (CTAB)-were conducted both in the absence and presence of ciprofloxacin (CIP).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!