Corn cultivation potentially plays a vital role in the global mercury (Hg) biogeochemical cycle. Nevertheless, there have been limited studies quantifying the Hg mass flow during corn cultivation. This study focuses on Hg uptake by corn plants in China, integrating data from both sample collection and prior studies, resulting in 400 datasets. The findings reveal that the Hg in corn plants is mainly incorporated in leaves (45.5 %-47.5 %) and husks (14.5 %-15.7 %). Despite a decrease in total gaseous Hg (TGM) concentrations in the atmosphere over time, annual Hg uptake by corn cultivation in China has risen from 72.0 (ranging from 47.6 to 96.3) tons (2009-2014) to 84.3 (ranging from 51.9 to 109.6) tons (2015-2020) due to the increasing in corn kernel production. Spatial analysis demonstrates regional disparities in Hg uptake, primarily influenced by corn kernel production, TGM levels, and soil Hg content. Furthermore, temporal analysis reveals a shift in the fate of Hg in corn plants, which can be attributed to variations in corn straw treatment policy or methods. From 2009 to 2014, a substantial amount of absorbed Hg by corn plants was re-released into the atmosphere (48.9 %) due to corn residues burning, whereas, between 2015 and 2020, a greater proportion of Hg ended up accumulating in the soil (51.1 %) after the imposition of the straw burning ban in China. Prior to the ban (2009-2014), corn cultivation contributed approximately 7.7 tons of Hg input to soil annually, with a range from 1.7 to 13.5. However, following the ban (2015-2020), Hg input into the soil increased by approximately 4.5 times, reaching 34.5 (ranging from 17.5 to 52.6) tons per year. These findings emphasize the significant risks associated with soil Hg pollution caused by corn cultivation due to the straw burning ban.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2023.167508 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!