A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

IDO-triggered swellable polymeric micelles for IDO inhibition and targeted cancer immunotherapy. | LitMetric

IDO-triggered swellable polymeric micelles for IDO inhibition and targeted cancer immunotherapy.

J Control Release

School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, South Korea; Department of Chemistry, POSTECH-CATHOLIC Biomedical Engineering Institute, POSTECH, Pohang 37673, South Korea. Electronic address:

Published: November 2023

Indoleamine 2,3-dioxygenase (IDO) has been studied as a promising target for cancer immunotherapy. IDO catalyzes the oxidation of tryptophan into kynurenine, which subsequently activates regulatory T cells, thereby promoting an immunosuppressive microenvironment in the tumor tissue. Due to its overexpression in tumor cells, IDO itself could be a tumor-specific stimulus for targeted cancer therapy. Toward this objective, we developed IDO-triggered swellable micelles for targeted cancer immunotherapy. The micelles are prepared by the self-assembly of amphiphilic polymers containing polymerized tryptophan as a hydrophobic block. The micelles exhibited IDO-responsive behavior via solubility conversion of the hydrophobic core triggered by the oxidation of tryptophan residues into kynurenine. The micelles were internalized into tumor cells and disassembled by overexpressed IDO. Loaded with IDO inhibitor, the micelle presented enhanced therapeutic antitumor effect, and effector T-cells were recruited into the tumor tissue. We demonstrated that overexpressed IDO in cancer cells could be utilized as a tumor-specific stimulus, and utilizing an IDO-responsive drug delivery system holds great promise for targeted cancer therapy and immunomodulation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jconrel.2023.09.050DOI Listing

Publication Analysis

Top Keywords

targeted cancer
16
cancer immunotherapy
12
ido-triggered swellable
8
oxidation tryptophan
8
tumor tissue
8
tumor cells
8
tumor-specific stimulus
8
cancer therapy
8
overexpressed ido
8
ido
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!