FABP3 belongs to a large family of cytoplasmic fatty acid binding proteins that are expressed in a tissue-specific manner. It is predominantly expressed in breast, muscle and heart. During our exploratory studies on the role of FABP3 in tumorigenesis and our consequent attempts to study the molecular mechanism responsible for the oncogenic potential of FABP3, we came across an unexpected role of FABP3 as an anti-bacterial protein. Presence of the protein was detected in culture media of cell lines stably over-expressing human FABP3. Conditioned medium from these FABP3 over-expressing cells exerted a distinct anti-bacterial activity against E. coli. Our results indicate that binding of FABP3 to the bacterial cell surface contributes to its anti-bacterial activity. Incubation of E. coli bacterial cells with FABP3 protein led to disruption of the physical integrity of bacterial cell membrane causing leakage of cellular components. Further, in silico analysis predicted strong binding of FABP3 to the antibiotic binding sites on the bacterial ribosome. Interestingly, we found that FABP3 is a naturally occurring secretory protein present in milk in abundance as confirmed by western blot and ELISA. Thus, our experimental data together with in silico analysis suggests that FABP3 is secreted in milk, has an anti-bacterial function, shows activity against E. coli by disrupting bacterial membrane and targeting the ribosome, and may play a protective role against bacterial infection in newborns.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bbagen.2023.130472 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!