AI Article Synopsis

  • Diatoms, a type of microalgae, have shifted from photosynthesis to becoming obligate heterotrophs, but the reasons behind this change are not fully understood.
  • Research in Singapore identified new non-photosynthetic diatom strains with unique behaviors, including the ability to navigate using secreted substances and faster movement when following trails left by others.
  • Findings suggest that these diatoms exhibit metabolic adaptations and a sophisticated motility system, including the ability to exert pushing forces and respond to environmental obstacles during movement.

Article Abstract

Diatoms are ancestrally photosynthetic microalgae. However, some underwent a major evolutionary transition, losing photosynthesis to become obligate heterotrophs. The molecular and physiological basis for this transition is unclear. Here, we isolate and characterize new strains of non-photosynthetic diatoms from the coastal waters of Singapore. These diatoms occupy diverse ecological niches and display glucose-mediated catabolite repression, a classical feature of bacterial and fungal heterotrophs. Live-cell imaging reveals deposition of secreted extracellular polymeric substance (EPS). Diatoms moving on pre-existing EPS trails (runners) move faster than those laying new trails (blazers). This leads to cell-to-cell coupling where runners can push blazers to make them move faster. Calibrated micropipettes measure substantial single-cell pushing forces, which are consistent with high-order myosin motor cooperativity. Collisions that impede forward motion induce reversal, revealing navigation-related force sensing. Together, these data identify aspects of metabolism and motility that are likely to promote and underpin diatom heterotrophy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10547550PMC
http://dx.doi.org/10.1098/rsob.230148DOI Listing

Publication Analysis

Top Keywords

move faster
8
cooperative motility
4
motility force
4
force generation
4
generation mechanosensing
4
mechanosensing foraging
4
foraging non-photosynthetic
4
non-photosynthetic diatom
4
diatoms
4
diatom diatoms
4

Similar Publications

Potassium-ion batteries (KIBs) have attracted significant attention in recent years as a result of the urgent necessity to develop sustainable, low-cost batteries based on non-critical raw materials that are competitive with market-available lithium-ion batteries. KIBs are excellent candidates, as they offer the possibility of providing high power and energy densities due to their faster K diffusion and very close reduction potential compared with Li/Li. However, research on KIBs is still in its infancy, and hence, more investigation is required both at the materials level and at the device level.

View Article and Find Full Text PDF

Objective: The endoscopic transsphenoidal approach is commonly used for sellar and suprasellar pathologies. However, reaching above the diaphragma sella, especially for posterosuperior and retrocavernous orientation, still poses some challenges. We designed and developed a steerable tip suction cannula (STSC) that has distinct leverage for endoscopic resection of such pathologies.

View Article and Find Full Text PDF

Fast yet force-effective mode of supracellular collective cell migration due to extracellular force transmission.

PLoS Comput Biol

January 2025

Department of Mechanical Engineering & Materials Science, Washington University, St. Louis, Missouri, United States of America.

Cell collectives, like other motile entities, generate and use forces to move forward. Here, we ask whether environmental configurations alter this proportional force-speed relationship, since aligned extracellular matrix fibers are known to cause directed migration. We show that aligned fibers serve as active conduits for spatial propagation of cellular mechanotransduction through matrix exoskeleton, leading to efficient directed collective cell migration.

View Article and Find Full Text PDF

Understanding the interaction between multiphase flow and reactive transport in porous media is critical for many environmental and industrial applications. When a nonwetting immiscible phase is present within the pore space, it can remain immobile, which we call unsaturated flow, or move, resulting in multiphase flow. Previous studies under unsaturated flow conditions have shown that, for a given flow rate, the product of a mixing-driven reaction increases as wetting phase saturation decreases.

View Article and Find Full Text PDF

Pangenome indexes are promising tools for many applications, including classification of nanopore sequencing reads. Move structure is a compressed-index data structure based on the Burrows-Wheeler Transform (BWT). It offers simultaneous O(1)-time queries and O(r) space, where r is the number of BWT runs (consecutive sequence of identical characters).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!