Epigenetic balance ensures mechanistic control of MLL amplification and rearrangement.

Cell

Cancer Epigenetics Institute, Fox Chase Cancer Center, Philadelphia, PA 19111, USA; Nuclear Dynamics and Cancer Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA; Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, PA 19111, USA; Department of Medicine, Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, MA 02129, USA. Electronic address:

Published: October 2023

MLL/KMT2A amplifications and translocations are prevalent in infant, adult, and therapy-induced leukemia. However, the molecular contributor(s) to these alterations are unclear. Here, we demonstrate that histone H3 lysine 9 mono- and di-methylation (H3K9me1/2) balance at the MLL/KMT2A locus regulates these amplifications and rearrangements. This balance is controlled by the crosstalk between lysine demethylase KDM3B and methyltransferase G9a/EHMT2. KDM3B depletion increases H3K9me1/2 levels and reduces CTCF occupancy at the MLL/KMT2A locus, in turn promoting amplification and rearrangements. Depleting CTCF is also sufficient to generate these focal alterations. Furthermore, the chemotherapy doxorubicin (Dox), which associates with therapy-induced leukemia and promotes MLL/KMT2A amplifications and rearrangements, suppresses KDM3B and CTCF protein levels. KDM3B and CTCF overexpression rescues Dox-induced MLL/KMT2A alterations. G9a inhibition in human cells or mice also suppresses MLL/KMT2A events accompanying Dox treatment. Therefore, MLL/KMT2A amplifications and rearrangements are controlled by epigenetic regulators that are tractable drug targets, which has clinical implications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10591855PMC
http://dx.doi.org/10.1016/j.cell.2023.09.009DOI Listing

Publication Analysis

Top Keywords

mll/kmt2a amplifications
12
amplifications rearrangements
12
therapy-induced leukemia
8
mll/kmt2a locus
8
kdm3b ctcf
8
mll/kmt2a
7
epigenetic balance
4
balance ensures
4
ensures mechanistic
4
mechanistic control
4

Similar Publications

Epigenetic balance ensures mechanistic control of MLL amplification and rearrangement.

Cell

October 2023

Cancer Epigenetics Institute, Fox Chase Cancer Center, Philadelphia, PA 19111, USA; Nuclear Dynamics and Cancer Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA; Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, PA 19111, USA; Department of Medicine, Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, MA 02129, USA. Electronic address:

MLL/KMT2A amplifications and translocations are prevalent in infant, adult, and therapy-induced leukemia. However, the molecular contributor(s) to these alterations are unclear. Here, we demonstrate that histone H3 lysine 9 mono- and di-methylation (H3K9me1/2) balance at the MLL/KMT2A locus regulates these amplifications and rearrangements.

View Article and Find Full Text PDF

Breakage-Fusion-Bridge Events Trigger Complex Genome Rearrangements and Amplifications in Developmentally Arrested T Cell Lymphomas.

Cell Rep

June 2019

Genome Integrity, Immunity and Cancer Unit, Equipe Labellisée Ligue Contre le Cancer, Department of Immunology, Department of Genomes and Genetics, Institut Pasteur, 75015 Paris, France. Electronic address:

To reveal the relative contribution of the recombination activating gene (RAG)1/2 nuclease to lymphomagenesis, we conducted a genome-wide analysis of T cell lymphomas from p53-deficient mice expressing or lacking RAG2. We found that while p53 lymphoblastic T cells harbor primarily ectopic DNA deletions, Rag2p53 T cell lymphomas display complex genomic rearrangements associated with amplification of the chromosomal location 9qA4-5.3.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!