A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 143

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3098
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: Attempt to read property "Count" on bool

Filename: helpers/my_audit_helper.php

Line Number: 3100

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3100
Function: _error_handler

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Insights into effects of grain boundary engineering in composite metal oxide catalysts for improving catalytic performance. | LitMetric

Insights into effects of grain boundary engineering in composite metal oxide catalysts for improving catalytic performance.

J Colloid Interface Sci

State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China.

Published: January 2024

Volatile Organic Compounds (VOCs) have long been a threat to human health. However, designing economical and efficient transition metal composite oxide catalysts for VOCs purification remains a challenge. Herein, this study demonstrates the enormous potential of grain boundary engineering in facilitating VOCs decomposition over ordered mesoporous composite oxide denoted as 3D-MnCo (x, y = 1, 3, 5, 7, 9). Specifically, the three-dimensional (3D) Mn7Co1 catalyst shows 100% ethyl acetate removal efficiency for a continuous airflow containing 1000 ppm ethyl acetate over 60000 h space velocity at 160 °C. Mechanism study suggests that the high catalytic performance originates from the lattice distortion caused by the introduction of heteroatoms, along with the size effect of nanopore walls, which leads to the formation of various grain boundaries on the catalyst surface. The presence of grain boundaries facilitates the generation of oxygen vacancies, thus promoting the migration and activation of oxygen species. Furthermore, the near-atmospheric pressure X-ray photoelectron spectroscopy (NAP- XPS) monitoring results reveal that the bimetallic synergy enhanced by grain boundary accelerates the catalytic reaction rate of VOCs through Mn+Co↔Mn+Co redox cycle. This study may shed light on the great potential of ordered mesoporous bimetallic oxide catalysts in VOCs pollution control.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jcis.2023.09.148DOI Listing

Publication Analysis

Top Keywords

grain boundary
12
oxide catalysts
12
boundary engineering
8
catalytic performance
8
composite oxide
8
catalysts vocs
8
ordered mesoporous
8
ethyl acetate
8
grain boundaries
8
grain
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!