AI Article Synopsis

  • Specific mutations in the TTR gene lead to hereditary ATTR amyloidosis, impacting the heart.
  • Researchers created two human induced pluripotent stem cell (iPSC) lines from patients with a TTR mutation (p.Val30Met), demonstrating high pluripotency.
  • These patient-derived iPSCs are valuable for studying amyloidosis mechanisms in different cell types and tissues.

Article Abstract

Specific mutations in the TTR gene are responsible for the development of variant (hereditary) ATTR amyloidosis. Here, we generated two human induced pluripotent stem cell (iPSC) lines from patients diagnosed with Transthyretin Cardiac Amyloidosis (ATTR-CM) carrying heterozygous mutation in the TTR gene (i.e., p.Val30Met). The patient-derived iPSC lines showed expression of high levels of pluripotency markers, trilineage differentiation capacity, and normal karyotype. The generation of these iPSC lines represents a great tool for modeling patient-specific amyloidosis in vitro, allowing the investigation of the pathological mechanisms related to the disease in different cell types and tissues.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10821799PMC
http://dx.doi.org/10.1016/j.scr.2023.103215DOI Listing

Publication Analysis

Top Keywords

ipsc lines
12
induced pluripotent
8
pluripotent stem
8
stem cell
8
lines patients
8
cardiac amyloidosis
8
carrying heterozygous
8
ttr gene
8
generation induced
4
lines
4

Similar Publications

Background: Our previous study identified that Sildenafil (a phosphodiesterase type 5 [PDE5] inhibitor) is a candidate repurposable drug for Alzheimer's Disease (AD) using in silico network medicine approach. However, the clinically meaningful size and mechanism-of-actions of sildenafil in potential prevention and treatment of AD remind unknown.

Method: We conducted new patient data analyses using both the MarketScan® Medicare with Supplemental database (n = 7.

View Article and Find Full Text PDF

Background: Efforts to genetically reverse C9orf72 pathology have been hampered by our incomplete understanding of the regulation of this complex locus.

Method: We generated five different genomic excisions at the C9orf72 locus in a patient-derived iPSC line and a WT line (11 total isogenic lines), and examined gene expression and pathological hallmarks of C9 FTD/ALS in motor neurons differentiated from these lines. Comparing the excisions in these isogenic series removed the confounding effects of different genomic backgrounds and allowed us to probe the effects of specific genomic changes.

View Article and Find Full Text PDF

Background: Homozygosity for the rare APOE3-Christchurch (APOE3Ch) variant, encoding for apoE3-R136S (apoE3-Ch), was linked to resistance against an aggressive form of familial Alzheimer's disease (AD). Carrying two copies of APOE3Ch was sufficient to delay autosomal AD onset by 30 years. This remarkable protective effect makes it a strong candidate for uncovering new therapies against AD.

View Article and Find Full Text PDF

The most common genetic cause of frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS) is an intronic GC repeat expansion in C9orf72. The repeats undergo bidirectional transcription to produce sense and antisense repeat RNA species, which are translated into dipeptide repeat proteins (DPRs). As toxicity has been associated with both sense and antisense repeat-derived RNA and DPRs, targeting both strands may provide the most effective therapeutic strategy.

View Article and Find Full Text PDF

The MIR-NAT MAPT-AS1 does not regulate Tau expression in human neurons.

PLoS One

January 2025

Neuroscience Discovery, Janssen Research & Development, Janssen Pharmaceutica, Beerse, Belgium.

The MAPT gene encodes Tau protein, a member of the large family of microtubule-associated proteins. Tau forms large insoluble aggregates that are toxic to neurons in several neurological disorders, and neurofibrillary Tau tangles represent a key pathological hallmark of Alzheimer's disease (AD) and other tauopathies. Lowering Tau expression levels constitutes a potential treatment for AD but the mechanisms that regulate Tau expression at the transcriptional or translational level are not well understood.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!