The perennial herb Houttuynia cordata has long been cultivated and used as medicinal and edible plant in Asia. Nowadays, increasing attention is attracted due to its numerous health benefits. Flavonoids are the main chemical constituents exerting pharmacological activities. In the present study, we investigated both metabolome and transcriptome of two H. cordata accessions (6 and 7) with distinct flavonoids contents. In total 397 metabolites, i.e., 220 flavonoids, 92 amino acids and derivatives, 20 vitamins, and 65 saccharides were abundant in aboveground part. Cyanidin-3-O-rutinoside and quercetin-3-O-galactoside were the most abundant flavonoids, which can be categorized into seven classes, namely anthocyanidins, chalcones, flavanols, flavanones, flavanonols, flavones, and flavonols. Flavonols was the most abundant group. Contents of 112 flavonoids differed significantly between the two accessions, with catechin-(7,8-bc)-4α-(3,4-dihydroxyphenyl)-dihydro-2-(3H)-one, cinchonain Id, and cinchonain Ic being the dominant flavonoid metabolites among them. Pinocembrin-7-O-neohesperidoside, pinocembrin-7-O-rutinoside, and kaempferol-3-O-galactoside-4'-O-glucoside were uniquely abundant in accession 7. Transcriptome data revealed a total of 110 different expressed genes related to flavonoid metabolism, with more highly expressed genes observed in 7#. We annotated a total of 19 differential flavonoid metabolites and 34 differentially expressed genes that are associated with the flavonoid metabolic network. Based on the transcriptome and qPCR data a total of 8 key candidate genes involved in flavonoid metabolism were identified. The ANS gene were found to play an important role in the synthesis of cyanidin-3-O-glucoside, while the CHI, F3'H and FLS genes were mainly responsible for controlling the levels of flavanones, flavones, and flavonols, respectively. Collectively, the present study provides important insights into the molecular mechanism underlying flavonoid metabolism in H. cordata.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.plaphy.2023.108059 | DOI Listing |
Fish Physiol Biochem
January 2025
Fish Nutrition, Biochemistry and Physiology Division, ICAR-Central Institute of Fisheries Education, Versova, Andheri West, Mumbai, 400061, Maharashtra, India.
A 60-day feeding trial was conducted to evaluate the combined effect of dietary soy phytoestrogens, specifically genistein and daidzein, on the gonadal recrudescence and maturation of male Cyprinus carpio (Linnaeus, 1758). Adult male C. carpio (60 ± 10 g) were fed with a diet with no added genistein or daidzein (C), 110 mg/100 mg genistein (GL), 210 mg/100 g genistein (GH), 4 mg/100 g daidzein (DL), 8 mg/100 g daidzein (DH), combination of 110 mg/100 mg genistein and 4 mg/100 g daidzein (DGL, equivalent to 17.
View Article and Find Full Text PDFAnim Sci J
January 2025
Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning, China.
The Citri Reticulatae Pericarpium (CRP), is the aged peel of Citrus fruit, which contains phenols, flavonoids, and polysaccharides. This study aims to investigate dietary CRP supplementation on the growth performance, serum biochemical indices, meat quality, intestinal morphology, microbiota, and metabolite of yellow-feathered broilers. A total of 240 yellow-feathered broilers (1.
View Article and Find Full Text PDFRapid Commun Mass Spectrom
April 2025
School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China.
Rationale: Astragali radix-Salvia miltiorrhiza (AR-SM) is an herb pair with good therapeutic effects and is widely used. In this study, the in vitro and in vivo components of AR-SM were quickly classified and identified based on UHPLC-orbital mass spectrometry. This provided a basis for clarifying the bioactive substances after compatibility of AR and SM.
View Article and Find Full Text PDFPhytother Res
January 2025
Faculty of Pharmaceutical Science, Assam Down Town University, Guwahati, Assam, India.
Metabolic syndrome (MetS) is a cluster of interrelated metabolic abnormalities that significantly elevate the risk of cardiovascular disease, obesity, and diabetes. Flavonoids, a diverse class of bioactive polyphenolic compounds found in plant-derived foods and beverages, have garnered increasing attention as potential therapeutic agents for improving metabolic health. This review provides a comprehensive analysis of the therapeutic effects of flavonoids in the context of the MetS, with a particular focus on their modulation of the AMP-activated protein kinase (AMPK) pathway.
View Article and Find Full Text PDFBMC Complement Med Ther
January 2025
Institute of Basic Medical Sciences of Xiyuan Hospital, Beijing Key Laboratory of Chinese Materia Pharmacology, China Academy of Chinese Medical Sciences, National Clinical Research Center of Traditional Chinese Medicine for Cardiovascular Diseases, Beijing, China.
Objectives: This study intended to explore whether the protective effect safflower yellow injection (SYI) on myocardial ischemia-reperfusion (I/R) injury in rats mediated of the NLRP3 inflammasome signaling.
Methods: The I/R model was prepared by ligating the left anterior descending coronary artery for 45 min and then releasing the blood flow for 150 min. 96 male Wistar rats were randomly divided into sham group, I/R group, Hebeishuang group (HBS), SYI high-dose group (I/R + SYI-H), SYI medium-dose group (I/R + SYI-M) and SYI low-dose group (I/R + SYI-L).
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!