Regulating the Spin State Configuration in Bimetallic Phosphorus Trisulfides for Promoting Sulfur Redox Kinetics.

J Am Chem Soc

Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute & Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China.

Published: October 2023

Lithium-sulfur (Li-S) batteries suffer from sluggish kinetics due to the poor conductivity of sulfur cathodes and polysulfide shutting. Current studies on sulfur redox catalysis mainly focus on the adsorption and catalytic conversion of lithium polysulfides but ignore the modulation of the electronic structure of the catalysts which involves spin-related charge transfer and orbital interactions. In this work, bimetallic phosphorus trisulfides embedded in Prussian blue analogue-derived nitrogen-doped hollow carbon nanocubes (FeCoPS/NCs) were elaborately synthesized as a host to reveal the relationship between the catalytic activity and the spin state configuration for Li-S batteries. Orbital spin splitting in FeCoPS drives the electronic structure transition from low-spin to high-spin states, generating more unpaired electrons on the 3d orbit. Specifically, the nondegenerate orbitals involved in the high-spin configuration of FeCoPS result in the upshift of energy levels, generating more active electronic states. Such tailored electronic structure increases the charge transfer, influences the d-band center, and further modifies the adsorption energy with lithium polysulfides and the potential reaction pathways. Consequently, the cell with FeCoPS/NC host exhibits an ultralow capacity decay of 0.037% per cycle over 1000 cycles. This study proposed a general strategy for sculpting geometric configurations to enable spin and orbital topology regulation in Li-S battery catalysts.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jacs.3c07213DOI Listing

Publication Analysis

Top Keywords

electronic structure
12
spin state
8
state configuration
8
bimetallic phosphorus
8
phosphorus trisulfides
8
sulfur redox
8
li-s batteries
8
lithium polysulfides
8
charge transfer
8
regulating spin
4

Similar Publications

Electrochemical reduction for chlorinated hydrocarbons contaminated groundwater remediation: Mechanisms, challenges, and perspectives.

Water Res

January 2025

State Key Laboratory of Geohazard Prevention and Geoenvironment Protection (Chengdu University of Technology), 1#, Dongsanlu, Erxianqiao, Chengdu 610059, Sichuan, PR China; State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution (Chengdu University of Technology), 1#, Dongsanlu, Erxianqiao, Chengdu 610059, Sichuan, PR China. Electronic address:

Electrochemical reduction technology is a promising method for addressing the persistent contamination of groundwater by chlorinated hydrocarbons. Current research shows that electrochemical reductive dechlorination primarily relies on direct electron transfer (DET) and active hydrogen (H) mediated indirect electron transfer processes, thereby achieving efficient dechlorination and detoxification. This paper explores the influence of the molecular charge structure of chlorinated hydrocarbons, including chlorolefin, chloroalkanes, chlorinated aromatic hydrocarbons, and chloro-carboxylic acid, on reductive dechlorination from the perspective of molecular electrostatic potential and local electron affinity.

View Article and Find Full Text PDF

Globally, fish have been severely affected by the widespread, chronic degradation of fresh waters, with a substantial proportion of species declining in abundance or range in recent decades. This has especially been the case in densely populated countries with an industrial heritage and intensive agriculture, where the majority of river catchments have been affected by deteriorations in water quality and changes in land use. This study used a spatially and temporally extensive dataset, encompassing 16,124 surveys at 1180 sites representing a wide range of river typologies and pressures, to examine changes in the fish populations of England's rivers over four decades (1980s-2010s).

View Article and Find Full Text PDF

Chalcogen Substitution-Modulated Molecule-Electrode Coupling in Single-Molecule Junctions.

Langmuir

January 2025

Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, 928 Second Street, Zhejiang, Hangzhou 310018, China.

Molecule-electrode interfaces play a pivotal role in defining the electron transport properties of molecular electronic devices. While extensive research has concentrated on optimizing molecule-electrode coupling (MEC) involving electrode materials and molecular anchoring groups, the role of the molecular backbone structure in modulating MEC is equally vital. Additionally, it is known that the incorporation of heteroatoms into the molecular backbone notably influences factors such as energy levels and conductive characteristics.

View Article and Find Full Text PDF

Palladium (Pd) catalysts are promising for electrochemical reduction of CO to CO but often can be deactivated by poisoning owing to the strong affinity of *CO on Pd sites. Theoretical investigations reveal that different configurations of *CO endow specific adsorption energies, thereby dictating the final performances. Here, a regulatory strategy toward *CO absorption configurations is proposed to alleviate CO poisoning by simultaneously incorporating Cu and Zn atoms into ultrathin Pd nanosheets (NSs).

View Article and Find Full Text PDF

Developing nonprecious metal-based electrocatalysts with exceptional activity and durability for water electrolysis remains a significant challenge. Herein, we report a highly efficient bifunctional electrocatalyst composed of sulfur-doped vanadium metal-organic frameworks (S@V-MOF) integrated with multiwalled carbon nanotubes (MWCNTs) to promote the synergistic effect between S@V-MOF and MWCNTs and modulate the electronic structure of the catalyst, which eventually enhanced its electrocatalytic performance. The S@V-MOF/MWCNT catalyst loaded at the Ni foam electrode exhibits remarkable activity for both the hydrogen evolution reaction (HER) in acidic media and oxygen evolution reaction (OER) in alkaline media, requiring overpotentials of 48 and 227 mV, respectively, to reach a current density of 10 mA cm.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!