Federated learning (FL) is a promising framework for privacy-preserving and distributed training with decentralized clients. However, there exists a large divergence between the collected local updates and the expected global update, which is known as the client drift and mainly caused by heterogeneous data distribution among clients, multiple local training steps, and partial client participation training. Most existing works tackle this challenge based on the empirical risk minimization (ERM) rule, while less attention has been paid to the relationship between the global loss landscape and the generalization ability. In this work, we propose FedGAMMA, a novel FL algorithm with Global sharpness-Aware MiniMizAtion to seek a global flat landscape with high performance. Specifically, in contrast to FedSAM which only seeks the local flatness and still suffers from performance degradation when facing the client-drift issue, we adopt a local varieties control technique to better align each client's local updates to alleviate the client drift and make each client heading toward the global flatness together. Finally, extensive experiments demonstrate that FedGAMMA can substantially outperform several existing FL baselines on various datasets, and it can well address the client-drift issue and simultaneously seek a smoother and flatter global landscape.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TNNLS.2023.3304453DOI Listing

Publication Analysis

Top Keywords

federated learning
8
global sharpness-aware
8
sharpness-aware minimization
8
local updates
8
client drift
8
client-drift issue
8
global
7
local
5
fedgamma federated
4
learning global
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!