Inflammasomes are multi-protein complexes localized within immune and non-immune cells that induce caspase activation, proinflammatory cytokine secretion, and ultimately pyroptosis-a type of cell death. Inflammasomes are involved in a variety of human diseases, especially acute or chronic inflammatory diseases. In this review, we focused on the strong correlation between the NLRP3 inflammasome and various reproductive diseases, including ovarian aging or premature ovarian insufficiency, PCOS, endometriosis, recurrent spontaneous abortion, preterm labor, pre-eclampsia, and male subfertility, as well as the multifaceted role of NLRP3 in the pathogenesis and treatment of these diseases. In addition, we provide an overview of the structure and amplification of inflammasomes. This comprehensive review demonstrates the vital role of NLRP3 inflammasome activation in human reproductive diseases together with the underlying mechanisms, offers new insights for mechanistic studies of reproduction, and provides promising possibilities for the development of drugs targeting the NLRP3 inflammasome for the treatment of reproductive disorders in the future.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/molehr/gaad035 | DOI Listing |
Front Biosci (Landmark Ed)
January 2025
Department of Surgery, Laboratory of Tumor Immunology and Immunotherapy, Morehouse School of Medicine, Atlanta, GA 30310, USA.
Immunology advances have increased our understanding of autoimmune, auto-inflammatory, immunodeficiency, infectious, and other immune-mediated inflammatory diseases (IMIDs). Furthermore, evidence is growing for the immune involvement in aging, metabolic and neurodegenerative diseases, and different cancers. However, further research has indicated sex/gender-based immune differences, which further increase higher incidences of various autoimmune diseases (AIDs), such as systemic lupus erythematosus (SLE), myasthenia gravis, and rheumatoid arthritis (RA) in females.
View Article and Find Full Text PDFFront Biosci (Landmark Ed)
January 2025
Department of Obstetrics and Gynecology, Zhongda Hospital, School of Medicine, Southeast University, 210000 Nanjing, Jiangsu, China.
Background: Pre-eclampsia (PE) is a gestational disorder that significantly endangers maternal and fetal health. Transfer ribonucleic acid (tRNA)-derived small RNAs (tsRNAs) are important in the progression and diagnosis of various diseases. However, their role in the development of PE is unclear.
View Article and Find Full Text PDFViruses
January 2025
College of Veterinary Medicine, Hebei Agricultural University, Baoding 071000, China.
Porcine reproductive and respiratory syndrome virus (PRRSV), an important pathogen affecting the pig industry, is an RNA virus with high genetic diversity. In this study, 12,299 clinical samples were collected from northern China during 2021-2023 to investigate the molecular epidemiological characteristics and genetic evolution of PRRSV. All samples were screened using qRT-PCR and further analyzed through gene and whole-genome sequencing.
View Article and Find Full Text PDFViruses
January 2025
Department of Biomedical & Nutritional Sciences, Zuckerberg College of Health Sciences, University of Massachusetts Lowell, Lowell, MA 01854, USA.
Hepatitis E Virus (HEV) is a globally widespread pathogen that causes acute hepatitis infection. Beyond hepatic pathogenesis, HEV has been proven to cause several extrahepatic manifestations, such as neurological, renal, and hematological manifestations. It was also associated with mortality in pregnant females.
View Article and Find Full Text PDFViruses
January 2025
Laboratory of Microbiology, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-Ku, Sapporo 060-0818, Hokkaido, Japan.
Bovine viral diarrhea (BVD) is caused by the BVD virus (BVDV) and has been reported worldwide in cattle. To estimate BVDV circulation among cattle where few BVD cases were reported in southern Japan, 1910 serum samples collected from 35 cattle farms without a BVD outbreak were investigated to detect antibodies against BVDV-1 and BVDV-2 using an indicator virus with a cytopathogenic effect and the luciferase gene, respectively. Neutralizing antibodies against BVDV-1 and BVDV-2 were detected more frequently in 18 vaccinated farms than in 17 nonvaccinated farms.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!