USP47 inhibits m6A-dependent c-Myc translation to maintain regulatory T cell metabolic and functional homeostasis.

J Clin Invest

Shanghai Institute of Immunology, Department of Immunology and Microbiology, State Key Laboratory of Systems Medicine for Cancer, Shanghai Jiao Tong University School of Medicine, Shanghai, China.

Published: December 2023

The functional integrity of Tregs is interwoven with cellular metabolism; however, the mechanisms governing Treg metabolic programs remain elusive. Here, we identified that the deubiquitinase USP47 inhibited c-Myc translation mediated by the RNA N6-methyladenosine (m6A) reader YTHDF1 to maintain Treg metabolic and functional homeostasis. USP47 positively correlated with the tumor-infiltrating Treg signature in samples from patients with colorectal cancer and gastric cancer. USP47 ablation compromised Treg homeostasis and function in vivo, resulting in the development of inflammatory disorders, and boosted antitumor immune responses. USP47 deficiency in Tregs triggered the accumulation of the c-Myc protein and in turn exacerbated hyperglycolysis. Mechanistically, USP47 prevented YTHDF1 ubiquitination to attenuate the association of YTHDF1 with translation initiation machinery, thereby decreasing m6A-based c-Myc translation efficiency. Our findings reveal that USP47 directs m6A-dependent metabolic programs to orchestrate Treg homeostasis and suggest novel approaches for selective immune modulation in cancer and autoimmune diseases by targeting of USP47.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10688989PMC
http://dx.doi.org/10.1172/JCI169365DOI Listing

Publication Analysis

Top Keywords

c-myc translation
12
usp47
8
metabolic functional
8
functional homeostasis
8
treg metabolic
8
metabolic programs
8
treg homeostasis
8
treg
5
usp47 inhibits
4
inhibits m6a-dependent
4

Similar Publications

Enhancer of zeste homolog 2 (EZH2) is a methyltransferase involved in cell cycle regulation, cell differentiation, and cell death and plays a role in modulating the immune response. Although it mainly functions by catalyzing the tri-methylation of H3 histone on K27 (H3K27), to inhibit the transcription of target genes, EZH2 can directly methylate several transcription factors or form complexes with them, regulating their functions. EZH2 expression/activity is often dysregulated in cancer, contributing to carcinogenesis and immune escape, thereby representing an important target in anti-cancer therapy.

View Article and Find Full Text PDF

Unlabelled: The maturation of RNA is mediated by the coordinated actions of RNA-binding proteins through post-transcriptional pre-mRNA processing. This process is a central regulatory mechanism for gene expression and plays a crucial role in the development of complex biological systems. MYC directly upregulates transcription of genes encoding the core components of pre-mRNA splicing machinery.

View Article and Find Full Text PDF

Depletion of myeloid-derived suppressor cells sensitizes murine multiple myeloma to PD-1 checkpoint inhibitors.

J Immunother Cancer

January 2025

Center for Translational Research in Hematologic Malignancies, Houston Methodist Neal Cancer Center, Houston Methodist Research Institute, Houston, Texas, USA

Background: Cancer immunotherapy using immune checkpoint blockade (ICB) has revolutionized cancer treatment. However, patients with multiple myeloma (MM) rarely respond to ICB. Accumulating evidence indicates that the complicated tumor microenvironment (TME) significantly impacts the efficacy of ICB therapy.

View Article and Find Full Text PDF

The oncoprotein c-Myc is expressed in all breast cancer subtypes, but its expression is higher in triple-negative breast cancer (TNBC) compared to estrogen receptor (ER+), progesterone receptor (PR+), or human epidermal growth factor receptor 2 (HER2+) positive tumors. The c-Myc gene is crucial for tumor progression and therapy resistance, impacting cell proliferation, differentiation, senescence, angiogenesis, immune evasion, metabolism, invasion, autophagy, apoptosis, chromosomal instability, and protein biosynthesis. Targeting c-Myc has emerged as a potential therapeutic strategy for TNBC, a highly aggressive and deadly breast cancer form.

View Article and Find Full Text PDF

Liver-specific gene PGRMC1 blocks c-Myc-induced hepatocarcinogenesis through ER stress-independent PERK activation.

Nat Commun

January 2025

The MOE Key Laboratory of Biosystems Homeostasis & Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, 310058, China.

Roles of liver-specific genes (LSGs) in tumor initiation and progression are rarely explored in hepatocellular carcinoma (HCC). Here we show that LSGs are generally downregulated in HCC tumor tissues compared to non-HCC liver tissues, and low-LSG HCCs show poor prognosis and the activated c-Myc pathway. Among the c-Myc- and patient prognosis-associated LSGs, PGRMC1 significantly blocks c-Myc-induced orthotopic HCC formation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!