Glioblastoma (GBM) is one of the most aggressive tumors in the brain with high mortality worldwide. Despite recent advances in therapeutic strategies, the survival rate remains low in patients with GBM. The pathogenesis of GBM is a very complicated process involving various genetic mutations affecting several oncogenic signaling pathways like Wnt/β-catenin axis. Overactivation of the Wnt/β-catenin signaling pathway is associated with decreased survival and poor prognosis in patients with GBM. MicroRNAs (miRNAs) were shown to play important roles in the regulation of cell proliferation, differentiation, apoptosis, and tumorigenesis by modulating the expression of their target genes. Aberrant expression of miRNAs were reported in various human malignancies including GBM, breast, colorectal, liver, and prostate cancers, but little is known about their cellular mechanisms. Therefore, recognition of the expression profile and regulatory effects of miRNAs on the Wnt/β-catenin pathway may offer a novel approach for the classification, diagnosis, prognosis, and treatment of patients with GBM. This review summarizes previous data on the modulatory role of miRNAs on the Wnt/β-catenin pathway implicated in tumorigenesis of GBM.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.4103/ijc.IJC_251_21 | DOI Listing |
Front Biosci (Landmark Ed)
January 2025
Department of Chemoradiotherapy, Ningbo No 2 Hospital, 315000 Ningbo, Zhejiang, China.
Background: Breast cancer stem cells (BCSCs) are instrumental in treatment resistance, recurrence, and metastasis. The development of breast cancer and radiation sensitivity is intimately pertinent to long non-coding RNA (lncRNA). This work is formulated to investigate how the lncRNA affects the stemness and radioresistance of BCSCs.
View Article and Find Full Text PDFRespir Res
January 2025
Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
Background: MicroRNAs (miRNAs) are crucial post-transcriptional regulators involved in inflammatory diseases, such as asthma. Poor lung function and airflow issues in childhood are linked to the development of chronic obstructive pulmonary disease (COPD) in adulthood.
Methods: We analyzed small RNA-Seq data from 365 peripheral whole blood samples from the Genetics of Asthma in Costa Rica Study (GACRS) for association with airflow levels measured by FEV1/FVC.
Genomics
January 2025
Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China. Electronic address:
The transition period from late pregnancy to early lactation in dairy cows involves significant metabolic changes to cope with the challenges related to energy metabolism. Muscle tissue, as the largest energy-metabolizing tissue in dairy cows, plays a crucial role in energy metabolism. Furthermore, circular RNAs (circRNAs) have been shown to play key roles in various biological events.
View Article and Find Full Text PDFPLoS One
January 2025
School of Clinical Medicine, Guizhou Medical University, Guiyang, China.
Legg-Calvé-Perthes disease (LCPD) involves femoral head osteonecrosis caused by disrupted blood supply, leading to joint deformity and early osteoarthritis. This study investigates the role of miRNA-223-5p in regulating hypoxia-induced apoptosis and enhancing osteogenesis in bone marrow mesenchymal stem cells (BMSCs). Utilizing a juvenile New Zealand white rabbit model of LCPD established through femoral neck ligation, we transfected BMSCs with miR-223-5p mimics, inhibitors, and controls, followed by hypoxic exposure.
View Article and Find Full Text PDFCells
January 2025
School of Medicine, Newgiza University (NGU), Giza 12577, Egypt.
Meis1 is a transcription factor involved in numerous functions including development and proliferation and has been previously shown to harness cell cycle progression. In this study, we used in silico analysis to predict that miR-499-5p targets Meis1 and that Malat1 sponges miR-499-5p. For the first time, we demonstrated that the overexpression of miR-499-5p led to the downregulation of Meis1 mRNA and protein in C166 cells by directly binding to its 3'UTR.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!