Blood-based biomarkers have been extensively evaluated for their diagnostic potential in Alzheimer's disease. However, their relative prognostic and monitoring capabilities for cognitive decline, amyloid-β (Aβ) accumulation and grey matter loss in cognitively unimpaired elderly require further investigation over extended time periods. This prospective cohort study in cognitively unimpaired elderly [n = 185, mean age (range) = 69 (53-84) years, 48% female] examined the prognostic and monitoring capabilities of glial fibrillary acidic protein (GFAP), neurofilament light (NfL), Aβ1-42/Aβ1-40 and phosphorylated tau (pTau)181 through their quantification in serum. All participants underwent baseline Aβ-PET, MRI and blood sampling as well as 2-yearly cognitive testing. A subset additionally underwent Aβ-PET (n = 109), MRI (n = 106) and blood sampling (n = 110) during follow-up [median time interval (range) = 6.1 (1.3-11.0) years]. Matching plasma measurements were available for Aβ1-42/Aβ1-40 and pTau181 (both n = 140). Linear mixed-effects models showed that high serum GFAP and NfL predicted future cognitive decline in memory (βGFAP×Time = -0.021, PFDR = 0.007 and βNfL×Time = -0.031, PFDR = 0.002) and language (βGFAP×Time = -0.021, PFDR = 0.002 and βNfL×Time = -0.018, PFDR = 0.03) domains. Low serum Aβ1-42/Aβ1-40 equally but independently predicted memory decline (βAβ1-42/Aβ1-40×Time = -0.024, PFDR = 0.02). Whole-brain voxelwise analyses revealed that low Aβ1-42/Aβ1-40 predicted Aβ accumulation within the precuneus and frontal regions, high GFAP and NfL predicted grey matter loss within hippocampal regions and low Aβ1-42/Aβ1-40 predicted grey matter loss in lateral temporal regions. Serum GFAP, NfL and pTau181 increased over time, while Aβ1-42/Aβ1-40 decreased only in Aβ-PET-negative elderly. NfL increases associated with declining memory (βNfLchange×Time = -0.030, PFDR = 0.006) and language (βNfLchange×Time = -0.021, PFDR = 0.02) function and serum Aβ1-42/Aβ1-40 decreases associated with declining language function (βAβ1-42/Aβ1-40×Time = -0.020, PFDR = 0.04). GFAP increases associated with Aβ accumulation within the precuneus and NfL increases associated with grey matter loss. Baseline and longitudinal serum pTau181 only associated with Aβ accumulation in restricted occipital regions. In head-to-head comparisons, serum outperformed plasma Aβ1-42/Aβ1-40 (ΔAUC = 0.10, PDeLong, FDR = 0.04), while both plasma and serum pTau181 demonstrated poor performance to detect asymptomatic Aβ-PET positivity (AUC = 0.55 and 0.63, respectively). However, when measured with a more phospho-specific assay, plasma pTau181 detected Aβ-positivity with high performance (AUC = 0.82, PDeLong, FDR < 0.007). In conclusion, serum GFAP, NfL and Aβ1-42/Aβ1-40 are valuable prognostic and/or monitoring tools in asymptomatic stages providing complementary information in a time- and pathology-dependent manner.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/brain/awad330 | DOI Listing |
Eur J Pain
February 2025
Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofia University Hospital, University of Cordoba, Cordoba, Spain.
Background And Objective: Fibromyalgia is a condition characterised by disabling levels of pain of varying intensity. Aerobic exercise may play a role in reducing pain in these patients. The aim of this review is to assess the dose of aerobic exercise needed, based on the frequency, intensity, type, time, volume and progression (FITT-VP) model, to obtain clinically relevant reductions in pain.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Neurology, Weill Cornell Medicine, New York, NY, United States of America.
Testosterone, an essential sex steroid hormone, influences brain health by impacting neurophysiology and neuropathology throughout the lifespan in both genders. However, human research in this area is limited, particularly in women. This study examines the associations between testosterone levels, gray matter volume (GMV) and cerebral blood flow (CBF) in midlife individuals at risk for Alzheimer's disease (AD), according to sex and menopausal status.
View Article and Find Full Text PDFF-Florbetaben (FBB) uptake in the supratentorial cortex is indicative of amyloid positivity. Due to PET's low spatial resolution, image noise, and spill-over of signal from adjacent white-matter into gray-matter, there are inconsistencies in ratings among trained readers. A set of 264 F-Florbetaben (amyloid) PET/MRI exams were reconstructed using conventional ordered subset expectation maximization (OSEM) method and MR-guided block sequential regularized expectation maximization (MRgBSREM) method.
View Article and Find Full Text PDFMayo Clin Proc Digit Health
December 2024
Department Radiology, Stanford University, Stanford, CA.
Artificial intelligence (AI) and machine learning (ML) are driving innovation in biosciences and are already affecting key elements of medical scholarship and clinical care. Many schools of medicine are capitalizing on the promise of these new technologies by establishing academic units to catalyze and grow research and innovation in AI/ML. At Stanford University, we have developed a successful model for an AI/ML research center with support from academic leaders, clinical departments, extramural grants, and industry partners.
View Article and Find Full Text PDFPCN Rep
March 2025
Advanced Neuroimaging Center, Institute for Quantum Medical Science National Institutes for Quantum Science and Technology Chiba Japan.
Aim: Superiority illusion (SI), a cognitive bias where individuals perceive themselves as better than others, may serve as a psychological mechanism that contributes to well-being and resilience in older adults. However, the specific neural basis of SI in elderly populations remains underexplored. This study aims to identify brain regions partially associated with SI, exploring its potential role in adaptive psychological processes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!