By means of massive (more than 1.2 · 106 molecules) molecular dynamics simulations at 300 K we have disentangled self- and cross-dipolar contributions to the dielectric relaxation of liquid water that cannot be experimentally resolved. We have demonstrated that cross dipolar correlations are of paramount importance. They amount for almost a 60% of the total dielectric amplitude. The corresponding relaxation function is a one-step Debye-like function with a characteristic time, τcross, of the order of the phenomenological Debye time, τD. In contrast, the relaxation function corresponding to the self-contribution is rather complex and contains a fast decay related to dipolar librations and a second relaxation step that can be well described by two exponentials: a low-amplitude fast process (τ0 = 0.31 ps) and a main slow process (τself = 5.4 ps) that fully randomizes the dipolar orientation. In addition to dipolar relaxation functions, we have also calculated scattering-like magnitudes characterizing translation and rotation of water molecules. Although these processes can be considered as "jump" processes in the short time range, at the time scale of about τD-τcross, at which the cross-dipolar correlations decay to zero, the observed behavior cannot be distinguished from that corresponding to uncoupled Brownian translational and rotational diffusion. We propose that this is the reason why the Debye model, which does not consider intermolecular dipolar interactions, seems to work at time t ≳ τD.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/5.0168588 | DOI Listing |
Adv Mater
January 2025
Laboratory of Advanced Materials, Institute of Optoelectronics, Fudan University, Shanghai, 200438, P. R. China.
Metal single atoms (SA)-support interactions inherently exhibit significant electrochemical activity, demonstrating potential in energy catalysis. However, leveraging these interactions to modulate electronic properties and extend application fields is a formidable challenge, demanding in-depth understanding and quantitative control of atomic-scale interactions. Herein, in situ, off-axis electron holography technique is utilized to directly visualize the interactions between SAs and the graphene surface.
View Article and Find Full Text PDFPolymers (Basel)
December 2024
Centro de Física de Materiales (CSIC-UPV/EHU)-Materials Physics Center (MPC), P. M. de Lardizábal 5, 20018 San Sebastián, Spain.
This work connects the calorimetric responses of different rubber-resin blends with varying resin contents with their alpha relaxation dynamics. We used differential scanning calorimetry and broadband dielectric spectroscopy to characterize the calorimetric and dielectric responses of styrene-butadiene, polybutadiene, and polyisoprene with different resin contents. To model the results, we used the Gordon-Taylor equation combined with an extension of the Adam-Gibbs approach.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
School of Physics and Electronic Information, Yantai University, Yantai 264005, China.
In this study, we synthesized perovskite BaSrSnO ceramics with a unique thorn-like microstructure using the solid-state reaction method. The structural and complex dielectric properties were investigated in detail. X-ray diffraction was employed to characterize the phase purity, while X-ray photoelectron spectroscopy was used to analyze the chemical state of the components.
View Article and Find Full Text PDFJ Phys Chem B
January 2025
Institut für Physikalische und Theoretische Chemie, Universität Regensburg, D-93040 Regensburg, Germany.
The cooperative dynamics and hydration of D-mannitol and yo-inositol in aqueous solution at 25 °C were investigated by broad-band dielectric relaxation spectroscopy (DRS) for solute concentrations < 0.9M. The recorded spectra, covering the frequency range 0.
View Article and Find Full Text PDFNat Commun
January 2025
Inorganic Chemistry Laboratory, University of Oxford, South Parks Road, Oxford, OX1 3QR, United Kingdom.
Inorganic semiconductors based on heavy pnictogen cations (Sb and Bi) have gained significant attention as potential nontoxic and stable alternatives to lead-halide perovskites for solar cell applications. A limitation of these novel materials, which is being increasingly commonly found, is carrier localization, which substantially reduces mobilities and diffusion lengths. Herein, CuSbSe is investigated and discovered to have delocalized free carriers, as shown through optical pump terahertz probe spectroscopy and temperature-dependent mobility measurements.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!