Control of breast-to-brain metastasis remains an urgent unmet clinical need. While chemotherapies are essential in reducing systemic tumor burden, they have been shown to promote non-brain metastatic invasiveness and drug-driven neurocognitive deficits through the formation of neurofibrillary tangles (NFT), independently. Now, in this study, we investigated the effect of chemotherapy on brain metastatic progression and promoting tumor-mediated NFT. Results show chemotherapies increase brain-barrier permeability and facilitate enhanced tumor infiltration, particularly through the blood-cerebrospinal fluid barrier (BCSFB). This is attributed to increased expression of matrix metalloproteinase 9 (MMP9) which, in turn, mediates loss of Claudin-6 within the choroid plexus cells of the BCSFB. Importantly, increased MMP9 activity in the choroid epithelium following chemotherapy results in cleavage and release of Tau from breast cancer cells. This cleaved Tau forms tumor-derived NFT that further destabilize the BCSFB. Our results underline for the first time the importance of the BCSFB as a vulnerable point of entry for brain-seeking tumor cells post-chemotherapy and indicate that tumor cells themselves contribute to Alzheimer's-like tauopathy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10769085PMC
http://dx.doi.org/10.1002/jnr.25249DOI Listing

Publication Analysis

Top Keywords

breast-to-brain metastasis
8
blood-cerebrospinal fluid
8
fluid barrier
8
tumor cells
8
metastasis exacerbated
4
exacerbated chemotherapy
4
chemotherapy blood-cerebrospinal
4
barrier induces
4
induces alzheimer's-like
4
alzheimer's-like pathology
4

Similar Publications

Extracellular vesicles (EVs) from brain-seeking breast cancer cells (Br-EVs) breach the blood-brain barrier (BBB) via transcytosis and promote brain metastasis. Here, we defined the mechanisms by which Br-EVs modulate brain endothelial cell (BEC) dynamics to facilitate their BBB transcytosis. BEC treated with Br-EVs show significant downregulation of Rab11fip2, known to promote vesicle recycling to the plasma membrane and significant upregulation of Rab11fip3 and Rab11fip5, which support structural stability of the endosomal compartment and facilitate vesicle recycling and transcytosis, respectively.

View Article and Find Full Text PDF

Understanding the specific type of brain malignancy, source of brain metastasis, and underlying transformation mechanisms can help provide better treatment and less harm to patients. The tumor microenvironment plays a fundamental role in cancer progression and affects both primary and metastatic cancers. The use of single-cell RNA sequencing to gain insights into the heterogeneity profiles in the microenvironment of brain malignancies is useful for guiding treatment decisions.

View Article and Find Full Text PDF

Myeloid Derived Suppressor Cells (MDSCs) support breast cancer growth via immune suppression and non-immunological mechanisms. Although 15% of patients with breast cancer will develop brain metastasis, there is scant understanding of MDSCs' contribution within the breast-to-brain metastatic microenvironment. Utilizing co-culture models mimicking a tumor-neuron-immune microenvironment and patient tissue arrays, we identified serotonergic receptor, HTR2B, on MDSCs to upregulate pNF-κB and suppress T cell proliferation, resulting in enhanced tumor growth.

View Article and Find Full Text PDF

The tumor microenvironment plays a crucial role in determining response to treatment. This involves a series of interconnected changes in the cellular landscape, spatial organization, and extracellular matrix composition. However, assessing these alterations simultaneously is challenging from a spatial perspective, due to the limitations of current high-dimensional imaging techniques and the extent of intratumoral heterogeneity over large lesion areas.

View Article and Find Full Text PDF

Trastuzumab improves overall survival for HER2+ breast cancer, but its short half-life in the cerebrospinal fluid (~2-4 days) and delivery limitations restrict the ability to target HER2+ central nervous system (CNS) disease. We developed an adeno-associated virus (AAV) vector expressing a codon-optimized, ubiquitin C (UbC)-promoter-driven trastuzumab sequence (AAV9.UbC.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!