Unlabelled: Targeting toll-like receptors (TLRs), via TLR agonists, has been implicated in the regulation of immunometabolism. B-chronic lymphocytic leukemia (B-CLL) represents a suitable model for B-cell derived malignancies with shifted metabolic adaptations. Several signaling pathways have been found to be critical in metabolic reprogramming of CLL, including mechanistic target of rapamycin- hypoxia inducible factor-1α (mTOR- HIF-1α) pathway, the main metabolic regulator of glycolysis. Here, we investigated the effect of TLR7/8 agonist (Resiquimod) on the expression of mTOR and HIF-1α in patients with CLL. B cells were purified using Rosettesep Human B cell Enrichment Cocktail (Stem cell Technologies, Vancouver, BC, Canada#15,024) from peripheral venous blood of CLL patients (n = 20) and healthy individuals (n = 15). Isolated B cells were then cultured in both presence and absence of Resiquimod. Gene expression of mTOR and HIF-1α were assessed using qRT-PCR. Resiquimod significantly decreased mTOR and HIF-1α gene expression in both CLL ( < 0.001and < 0.001, respectively) and Normal B cells ( = 0.004 and = 0.001, respectively). Resiquimod may reprogram immunometabolism of malignant B-CLL cells via down-regulation of key glycolytic metabolic actors, mTOR and HIF-1α genes. Accordingly, Resiquimod may be an adjuvant as a therapeutic tool for CLL, which needs to be studied further.
Supplementary Information: The online version contains supplementary material available at 10.1007/s12288-023-01649-y.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10542076 | PMC |
http://dx.doi.org/10.1007/s12288-023-01649-y | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!