LncRNA LINC00592 mediates the promoter methylation of WIF1 to promote the development of bladder cancer.

Open Med (Wars)

Department of Urology, The First Hospital of Changsha, No. 311 Yingpan Road, Kaifu District, Changsha, Hunan, PR China.

Published: September 2023

Epigenetic alteration is a key feature that contributes to the progression of bladder cancer (BC) and long non-coding RNAs serve crucial role in the epigenetic modulation. This study was designed to explore the epigenetic regulation of LINC00592 in BC. LINC00592 expression in BC was examined. Then, LINC00592 was silenced in BC cell followed by cell behavior analyses using CCK-8, transwell, western blot, or flow cytometry. Potential downstream target of LINC00592 was explored using RNA pull-down assay and methylation of WIF1 was determined using methylated-specific PCR. In addition, WIF1 or/and LINC00592 were silenced in BC cells followed by cell behavior analyses to explore the regulation between them. Upregulation of LINC00592 was significantly detected in BC tissues and cells. In BC cells silencing LINC00592 suppressed the proliferation, migration, and epithelial-mesenchymal transitions (EMT), but enhanced apoptosis. Moreover, LINC00592 recruited DNMT1, DNMT3A, and DNMT3B to enhance WIF1 promoter methylation. In addition, WIF1 overexpression suppressed the proliferation, migration, as well as EMT, but enhanced apoptosis. Silencing WIF1 significantly attenuated the role of silencing LINC00592 in suppressing the proliferative, migratory, and EMT ability of BC cells, and increasing the apoptosis. LINC00592 promoted the growth and metastasis of BC via enhancing the promoter methylation of WIF1 and decreasing WIF1 transcription.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10541805PMC
http://dx.doi.org/10.1515/med-2023-0788DOI Listing

Publication Analysis

Top Keywords

promoter methylation
12
methylation wif1
12
linc00592
10
wif1
8
bladder cancer
8
linc00592 silenced
8
cell behavior
8
behavior analyses
8
addition wif1
8
silencing linc00592
8

Similar Publications

Background: A recent prospective phase II study (ECOG-ACRIN E2211) demonstrated that MGMT deficiency was associated with a significant response to capecitabine and temozolomide (CAPTEM) in pancreatic neuroendocrine neoplasms (NENs); however, routine MGMT analysis in NENs was not recommended. Our study sought to demonstrate whether loss of MGMT protein expression is associated with improved overall survival (OS) in patients receiving CAPTEM for NENs from various tumor sites.

Materials And Methods: Paraffin-embedded tumor samples were evaluated by immunohistochemistry (IHC) using an MGMT monoclonal antibody.

View Article and Find Full Text PDF

Genomic imprinting is the parent-of-origin dependent monoallelic expression of genes often associated with regions of germline-derived DNA methylation that are maintained as differentially methylated regions (gDMRs) in somatic tissues. This form of epigenetic regulation is highly conserved in mammals and is thought to have co-evolved with placentation. Tissue-specific gDMRs have been identified in human placenta, suggesting that species-specific imprinting dependent on unorthodox epigenetic establishment or maintenance may be more widespread than previously anticipated.

View Article and Find Full Text PDF

Clear cell renal cell carcinoma (ccRCC) is characterised by significant genetic heterogeneity, which has diagnostic and prognostic implications. Very limited evidence is available regarding DNA methylation heterogeneity. We therefore generate sequence level DNA methylation data on 136 multi-region tumour and normal kidney tissue from 18 ccRCC patients, along with matched whole exome sequencing (85 samples) and gene expression (47 samples) data on a subset of samples.

View Article and Find Full Text PDF

TGR5 attenuates DOCA-salt hypertension through regulating histone H3K4 methylation of ENaC in the kidney.

Metabolism

January 2025

Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China; Department of Pathophysiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China. Electronic address:

Epithelial sodium channel (ENaC), located in the collecting duct principal cells of the kidney, is responsible for the reabsorption of sodium and plays a critical role in the regulation of extracellular fluid volume and consequently blood pressure. The G protein-coupled bile acid receptor (TGR5) is a membrane receptor mediating effects of bile acid and is implicated in kidney diseases. The current study aims to investigate whether TGR5 activation in the kidney regulated ENaC expression and potential mechanism.

View Article and Find Full Text PDF

Background: Liver Hepatocellular Carcinoma (LIHC) is a prevalent and aggressive liver cancer with limited therapeutic options. Identifying key genes involved in LIHC can enhance our understanding of its molecular mechanisms and aid in the development of targeted therapies. This study aims to identify differentially expressed genes (DEGs) and key hub genes in LIHC using bioinformatics approaches and experimental validation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!