Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The availability of natural protein sequences synergized with generative artificial intelligence (AI) provides new paradigms to create enzymes. Although active enzyme variants with numerous mutations have been produced using generative models, their performance often falls short compared to their wild-type counterparts. Additionally, in practical applications, choosing fewer mutations that can rival the efficacy of extensive sequence alterations is usually more advantageous. Pinpointing beneficial single mutations continues to be a formidable task. In this study, using the generative maximum entropy model to analyze luciferase homologs, and in conjunction with biochemistry experiments, we demonstrated that natural evolutionary information could be used to predictively improve enzyme activity and stability by engineering the active center and protein scaffold, respectively. The success rate of designed single mutants is ~50% to improve either luciferase activity or stability. These finding highlights nature's ingenious approach to evolving proficient enzymes, wherein diverse evolutionary pressures are preferentially applied to distinct regions of the enzyme, ultimately culminating in an overall high performance. We also reveal an evolutionary preference in luciferase towards emitting blue light that holds advantages in terms of water penetration compared to other light spectrum. Taken together, our approach facilitates navigation through enzyme sequence space and offers effective strategies for computer-aided rational enzyme engineering.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10541610 | PMC |
http://dx.doi.org/10.1101/2023.09.18.558367 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!