A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session2leq2pk6q4028o6khp093p41eahgm7ji): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

Exploiting the therapeutic vulnerability of IDH-mutant gliomas with zotiraciclib. | LitMetric

AI Article Synopsis

  • - The study identifies zotiraciclib (ZTR) as a potent treatment for IDH-mutant gliomas, showing it selectively inhibits their growth through a targeted approach.
  • - ZTR works by suppressing key proteins involved in cell function, leading to mitochondrial dysfunction, reduced NAD+ production, and increased oxidative stress.
  • - These findings have prompted a clinical trial (NCT05588141) to explore the effectiveness of ZTR in treating patients with IDH-mutant gliomas, reflecting a move toward precision medicine.

Article Abstract

Unlabelled: Isocitrate dehydrogenase (IDH)-mutant gliomas have distinctive metabolic and biological traits that may render them susceptible to targeted treatments. Here, by conducting a high-throughput drug screen, we pinpointed a specific susceptibility of IDH-mutant gliomas to zotiraciclib (ZTR). ZTR exhibited selective growth inhibition across multiple IDH-mutant glioma and models. Mechanistically, ZTR at low doses suppressed CDK9 and RNA Pol II phosphorylation in IDH-mutant cells, disrupting mitochondrial function and NAD+ production, causing oxidative stress. Integrated biochemical profiling of ZTR kinase targets and transcriptomics unveiled that ZTR-induced bioenergetic failure was linked to the suppression of PIM kinase activity. We posit that the combination of mitochondrial dysfunction and an inability to adapt to oxidative stress resulted in significant cell death upon ZTR treatment, ultimately increasing the therapeutic vulnerability of IDH-mutant gliomas. These findings prompted a clinical trial evaluating ZTR in IDH-mutant gliomas towards precision medicine ( ).

Highlights: Zotiraciclib (ZTR), a CDK9 inhibitor, hinders IDH-mutant glioma growth and . ZTR halts cell cycle, disrupts respiration, and induces oxidative stress in IDH-mutant cells.ZTR unexpectedly inhibits PIM kinases, impacting mitochondria and causing bioenergetic failure.These findings led to the clinical trial NCT05588141, evaluating ZTR for IDH-mutant gliomas.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10541587PMC
http://dx.doi.org/10.1101/2023.06.29.547143DOI Listing

Publication Analysis

Top Keywords

idh-mutant gliomas
24
oxidative stress
12
idh-mutant
10
ztr
9
therapeutic vulnerability
8
vulnerability idh-mutant
8
gliomas zotiraciclib
8
zotiraciclib ztr
8
idh-mutant glioma
8
clinical trial
8

Similar Publications

Unlabelled: Diagnostic accuracy and therapeutic decision-making for IDH-mutant gliomas in tumor board reviews are based on MRI and multidisciplinary interactions.

Materials And Methods: This study explores the feasibility of deep learning-based reconstruction (DLR) in MRI for IDH-mutant gliomas. The research utilizes a multidisciplinary approach, engaging neuroradiologists, neurosurgeons, neuro-oncologists, and radiotherapists to evaluate qualitative aspects of DLR and conventional reconstructed (CR) sequences.

View Article and Find Full Text PDF

Purpose: Current methods for glioma response assessment are limited. This study aimed to assess the technical and clinical feasibility of molecular profiling using longitudinal intracranial CSF from patients with gliomas.

Experimental Design: Adults with gliomas underwent longitudinal intracranial CSF collection via Ommaya reservoirs or ventriculoperitoneal shunts.

View Article and Find Full Text PDF

Epidemiological analysis of adult-type diffuse lower-grade gliomas and incidence and prevalence estimates of diffuse IDH-mutant gliomas in France.

Neurochirurgie

December 2024

Institute of Functional Genomics, Montpellier University, CNRS, INSERM, Montpellier, France; French Brain Tumor DataBase (Recensement national histologique des Tumeurs Primitives du SNC), CHU/ICM Montpellier, Montpellier, France; Department of Medical Oncology, Institut régional du Cancer de Montpellier (ICM), University of Montpellier, Montpellier, France.

Background: The recent advent of anti-IDH therapies and changes in the WHO classification of gliomas implies estimating the number of patients who could benefit (or not) from anti-IDH treatment. As published data on the current incidence of different subtypes of IDH-mutant gliomas (based on the latest histomolecular WHO classification) are lacking in many countries. The present analysis aims to review the main factors impacting the incidence of gliomas and lower-grade gliomas and to estimate the incidence and prevalence of IDH-mutant gliomas in France.

View Article and Find Full Text PDF

The mesenchymal transformations of infiltrating gliomas are uncommon events. This is particularly true of IDH-mutant astrocytomas and oligodendrogliomas, in which mesenchymal transformation is exceedingly rare. oligosarcoma is a newly recognized methylation class (MC) that represents transformed 1p/19q co-deleted oligodendrogliomas, but recent studies indicate it may be non-specific.

View Article and Find Full Text PDF

Isocitrate dehydrogenase (IDH) mutant gliomas are classified as astrocytoma or oligodendroglioma based on the recent application of mutation, mutation, and 1p/19q co-deletion. Astrocytomas classically show and mutations, whereas oligodendrogliomas are defined by 1p/19q co-deletion. However, there are reports of gliomas that harbor both astrocytoma and oligodendroglioma morphologically and molecularly.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!