Unlabelled: Dynamic functional connectivity (DFC) analysis has been widely applied to functional magnetic resonance imaging (fMRI) data to reveal the time-varying functional interactions between brain regions. Although the sliding window (SW) method is popular for DFC analysis, the selection of window length is hard, and the temporal resolution is limited by the window length. The hidden Markov model (HMM) without the limitation of window length has been proven to be able to estimate time-varying brain states from fMRI data. However, HMM tends to be overfitted in DFC analysis of fMRI data because of the high spatial dimension and the limited sample size of fMRI data. In this study, we proposed an alternating HMM (aHMM) method that used the functional connectivity estimation of SW to initialize the covariance matrix of HMM and adopted an alternating HMM procedure to reduce the number of parameters during each optimization. The simulated and real fMRI resting data from the Human Connectome Projects showed that aHMM produced better robustness to noise, parameter number and sample size in DFC estimation than SW and HMM. For the real fMRI resting data of cerebral small vessel disease (CSVD), results of aHMM revealed that amnesia and mild cognitive impairment (aMCI) caused the CSVD with aMCI (CSVD-aMCI) group tended to spend more time on the brain state with overall weak connections and less time on the state with overall strong connections than the CSVD-controls. Moreover, CSVD-aMCI showed significantly lower connectivity amplitude and higher connectivity fluctuation than CSVD-control. In contrast, HMM did not detect intergroup differences of the connectivity amplitude and fluctuations and SW did not detect intergroup differences of connectivity fluctuations and fraction of time. The results further indicated that aHMM outperformed HMM and SW in detecting inter-group differences of temporal properties of DFC and connectivity fluctuations.

Supplementary Information: The online version contains supplementary material available at 10.1007/s11571-022-09874-3.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10542089PMC
http://dx.doi.org/10.1007/s11571-022-09874-3DOI Listing

Publication Analysis

Top Keywords

fmri data
16
functional connectivity
12
dfc analysis
12
window length
12
dynamic functional
8
connectivity
8
connectivity estimation
8
hidden markov
8
markov model
8
hmm
8

Similar Publications

A 3D decoupling Alzheimer's disease prediction network based on structural MRI.

Health Inf Sci Syst

December 2025

School of Mathematics and Computing, University of Southern Queensland, 487-535 West Street, Toowoomba, QLD 4350 Australia.

Purpose: This paper aims to develop a three-dimensional (3D) Alzheimer's disease (AD) prediction method, thereby bettering current predictive methods, which struggle to fully harness the potential of structural magnetic resonance imaging (sMRI) data.

Methods: Traditional convolutional neural networks encounter pressing difficulties in accurately focusing on the AD lesion structure. To address this issue, a 3D decoupling, self-attention network for AD prediction is proposed.

View Article and Find Full Text PDF

Artificial Intelligence in Pediatric Epilepsy Detection: Balancing Effectiveness With Ethical Considerations for Welfare.

Health Sci Rep

January 2025

Department of Research The Medical Research Circle (MedReC) Goma Democratic Republic of the Congo.

Background And Aim: Epilepsy is a major neurological challenge, especially for pediatric populations. It profoundly impacts both developmental progress and quality of life in affected children. With the advent of artificial intelligence (AI), there's a growing interest in leveraging its capabilities to improve the diagnosis and management of pediatric epilepsy.

View Article and Find Full Text PDF

This review examines the emerging applications of machine learning (ML) and radiomics in the diagnosis and prediction of placenta accreta spectrum (PAS) disorders, addressing a significant challenge in obstetric care. It highlights recent advancements in ML algorithms and radiomic techniques that utilize medical imaging modalities like magnetic resonance imaging (MRI) and ultrasound for effective classification and risk stratification of PAS. The review discusses the efficacy of various deep learning models, such as nnU-Net and DenseNet-PAS, which have demonstrated superior performance over traditional diagnostic methods through high AUC scores.

View Article and Find Full Text PDF

Context: Osteonecrosis (ON) is bone death caused by inadequate blood supply and its optimal management remains uncertain.

Objective: We describe the outcomes of BP (pamidronate) treatment in our patients.

Design: Data regarding clinical, laboratory, magnetic resonance imaging (MRI) studies, and bone mineral density measurements (BMD) were recorded before and one year after treatment (reevaluation).

View Article and Find Full Text PDF

Multiple sclerosis (MS) is an autoimmune disease of the brain and spinal cord with both inflammatory and neurodegenerative features. Although advances in imaging techniques, particularly magnetic resonance imaging (MRI), have improved the process of diagnosis, its cause is unknown, a cure remains elusive and the evidence base to guide treatment is lacking. Computational techniques like machine learning (ML) have started to be used to understand MS.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!