The formation and sedimentation of oil-mineral aggregates (OMAs) is the major method to transport spilled oil to the seafloor. In this study, the formation and sedimentation experiments of OMA using montmorillonite and four crude oils were performed in a wave tank in the presence of chemical dispersant. Most of the formed OMAs were droplet OMAs, and single droplet OMA would aggregate into multiple ones under the action of the dispersant. The size of the oil droplets trapped in the OMA increased with time and was larger for the oil with higher viscosity. The sinking velocities of OMAs formed in this study were between 100-1200 μm s and they were positively correlated with their diameter. The density of OMA was of the same order as that of the crude oil that formed them. An increase in the dispersant dosage could promote the formation of OMAs. The oil content in OMAs was higher for the denser oil in the presence of a dispersant. The maximum oil trapping efficiency of OMAs was 48.05%. This study provides fundamental data on the formation kinetics of OMAs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d3em00327b | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!