Towards Artificial Visual Sensory System: Organic Optoelectronic Synaptic Materials and Devices.

Angew Chem Int Ed Engl

College of Materials Science and Opto-Electronic Technology &, Center of Materials Science and Optoelectronics Engineering &, College of Resources and Environment &, CAS Center for Excellence in Topological Quantum Computation &, CAS Key Laboratory of Vacuum Physic, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China.

Published: January 2024

Developing an artificial visual sensory system requires optoelectronic materials and devices that can mimic the behavior of biological synapses. Organic/polymeric semiconductors have emerged as promising candidates for optoelectronic synapses due to their tunable optoelectronic properties, mechanic flexibility, and biological compatibility. In this review, we discuss the recent progress in organic optoelectronic synaptic materials and devices, including their design principles, working mechanisms, and applications. We also highlight the challenges and opportunities in this field and provide insights into potential applications of these materials and devices in next-generation artificial visual systems. By leveraging the advances in organic optoelectronic materials and devices, we can envision its future development in artificial intelligence.

Download full-text PDF

Source
http://dx.doi.org/10.1002/anie.202313634DOI Listing

Publication Analysis

Top Keywords

materials devices
20
artificial visual
12
organic optoelectronic
12
visual sensory
8
sensory system
8
optoelectronic synaptic
8
synaptic materials
8
optoelectronic materials
8
optoelectronic
6
materials
5

Similar Publications

In this Prentice Medal Award lecture, I shall recount my career in vision science in the context of three types of inspiration-"being inspired," "personal inspiration," and "inspiring others." My research has derived inspiration from a variety of sources, such as contemporary and historical research doyens in the ophthalmic field and beyond, artists, Greek philosophers, and abstract constructs such as principles and adages. A given moment of inspiration can range from being a profound experience to a subtle realization during a quiet moment of reflection.

View Article and Find Full Text PDF

Aim: This study evaluated the smear layer removal provided by conventional, sonic, and ultrasonic irrigation techniques.

Methodology: Forty extracted human mandibular first premolars were selected and instrumented using the ProTaper Next System files and 2.5% sodium hypochlorite.

View Article and Find Full Text PDF

Unlabelled: The article is devoted to the problem of the rehabilitation stage of cochlear implantation in patients with inner ear abnormalities. It provides a detailed analysis of the audiological characteristics of such patients and draws conclusions about approaches to interpreting diagnostic data and speech processors fitting.

Material And Methods: The track records of 80 patients with abnormalities of the inner ear development were retrospectively studied, of which 10 had abnormal structure of the auditory nerve.

View Article and Find Full Text PDF

Memristive Ion Dynamics to Enable Biorealistic Computing.

Chem Rev

December 2024

Ming Hsieh Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, California 90089, United States.

Conventional artificial intelligence (AI) systems are facing bottlenecks due to the fundamental mismatches between AI models, which rely on parallel, in-memory, and dynamic computation, and traditional transistors, which have been designed and optimized for sequential logic operations. This calls for the development of novel computing units beyond transistors. Inspired by the high efficiency and adaptability of biological neural networks, computing systems mimicking the capabilities of biological structures are gaining more attention.

View Article and Find Full Text PDF

Ultrathin, Friendly Environmental, and Flexible CsPb(Cl/Br)-Silica Composite Film for Blue-Light-Emitting Diodes.

Langmuir

December 2024

Key Laboratory of Photonic Materials and Devices Physics for Oceanic Applications, Ministry of Industry and Information Technology of China, College of Physics and Optoelectronic Engineering, Harbin Engineering University, Harbin 150001, China.

Due to intrinsic defects in blue-light-emitting perovskite materials, the charge carriers are prone to being trapped by the trap states. Therefore, the preparation of efficient blue-light-emitting perovskite materials remains a significant challenge. Herein, CsPb(Cl/Br) nanocrystal (NCs)@SiO structures were fabricated through hydrolyzing (3-aminopropyl)-triethoxysilane (APTS).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!