Process mining and data mining applications in the domain of chronic diseases: A systematic review.

Artif Intell Med

Department of Clinical Science, Intervention and Technology, Karolinska Institutet, 17177 Stockholm, Sweden; Department of Clinical Physiology, Karolinska University Hospital, 17176 Stockholm, Sweden; Department of Medical Technology, Karolinska University Hospital, 17176 Stockholm, Sweden; Department of Textile Technology, University of Borås, 50190 Borås, Sweden.

Published: October 2023

The widespread use of information technology in healthcare leads to extensive data collection, which can be utilised to enhance patient care and manage chronic illnesses. Our objective is to summarise previous studies that have used data mining or process mining methods in the context of chronic diseases in order to identify research trends and future opportunities. The review covers articles that pertain to the application of data mining or process mining methods on chronic diseases that were published between 2000 and 2022. Articles were sourced from PubMed, Web of Science, EMBASE, and Google Scholar based on predetermined inclusion and exclusion criteria. A total of 71 articles met the inclusion criteria and were included in the review. Based on the literature review results, we detected a growing trend in the application of data mining methods in diabetes research. Additionally, a distinct increase in the use of process mining methods to model clinical pathways in cancer research was observed. Frequently, this takes the form of a collaborative integration of process mining, data mining, and traditional statistical methods. In light of this collaborative approach, the meticulous selection of statistical methods based on their underlying assumptions is essential when integrating these traditional methods with process mining and data mining methods. Another notable challenge is the lack of standardised guidelines for reporting process mining studies in the medical field. Furthermore, there is a pressing need to enhance the clinical interpretation of data mining and process mining results.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.artmed.2023.102645DOI Listing

Publication Analysis

Top Keywords

process mining
32
data mining
28
mining methods
20
mining
14
mining data
12
chronic diseases
12
mining process
12
process
8
data
8
methods
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!