A critical review on the migration and transformation processes of heavy metal contamination in lead-zinc tailings of China.

Environ Pollut

SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, University Town, Guangzhou, 510006, China.

Published: December 2023

The health risks of lead-zinc (Pb-Zn) tailings from heavy metal (HMs) contamination have been gaining increasing public concern. The dispersal of HMs from tailings poses a substantial threat to ecosystems. Therefore, studying the mechanisms of migration and transformation of HMs in Pb-Zn tailings has significant ecological and environmental significance. Initially, this study encapsulated the distribution and contamination status of Pb-Zn tailings in China. Subsequently, we comprehensively scrutinized the mechanisms governing the migration and transformation of HMs in the Pb-Zn tailings from a geochemical perspective. This examination reveals the intricate interplay between various biotic and abiotic constituents, including environmental factors (EFs), characteristic minerals, organic flotation reagents (OFRs), and microorganisms within Pb-Zn tailings interact through a series of physical, chemical, and biological processes, leading to the formation of complexes, chelates, and aggregates involving HMs and OFRs. These interactions ultimately influence the migration and transformation of HMs. Finally, we provide an overview of contaminant migration prediction and ecological remediation in Pb-Zn tailings. In this systematic review, we identify several forthcoming research imperatives and methodologies. Specifically, understanding the dynamic mechanisms underlying the migration and transformation of HMs is challenging. These challenges encompass an exploration of the weathering processes of characteristic minerals and their interactions with HMs, the complex interplay between HMs and OFRs in Pb-Zn tailings, the effects of microbial community succession during the storage and remediation of Pb-Zn tailings, and the importance of utilizing process-based models in predicting the fate of HMs, and the potential for microbial remediation of tailings.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envpol.2023.122667DOI Listing

Publication Analysis

Top Keywords

pb-zn tailings
32
migration transformation
20
transformation hms
16
tailings
11
hms
10
heavy metal
8
tailings china
8
pb-zn
8
hms pb-zn
8
characteristic minerals
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!