Chronic pain is a frequent, distressing and poorly understood health problem. Plasticity of synaptic transmission in the nociceptive pathways after inflammation or injury is assumed to be an important cellular basis for chronic, pathological pain. Glutamate serves as the main excitatory neurotransmitter at key synapses in the somatosensory nociceptive pathways, in which it acts on both ionotropic and metabotropic glutamate receptors. Although conventionally postsynaptic, compelling anatomical and physiological evidence demonstrates the presence of presynaptic glutamate receptors in the nociceptive pathways. Presynaptic glutamate receptors play crucial roles in nociceptive synaptic transmission and plasticity. They modulate presynaptic neurotransmitter release and synaptic plasticity, which in turn regulates pain sensitization. In this review, we summarize the latest understanding of the expression of presynaptic glutamate receptors in the nociceptive pathways, and how they contribute to nociceptive information processing and pain hypersensitivity associated with inflammation / injury. We uncover the cellular and molecular mechanisms of presynaptic glutamate receptors in shaping synaptic transmission and plasticity to mediate pain chronicity, which may provide therapeutic approaches for treatment of chronic pain.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.pharmthera.2023.108539 | DOI Listing |
Sci Immunol
January 2025
IDIBAPS Biomedical Research Institute, Barcelona, Spain.
Patient-derived NMDAR mAbs combined with single-particle cryo-electron microscopy reveal multiple GluN1 epitopes and distinct functional effects.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Buck Institute for Research on Aging, Novato, CA, USA.
Background: Synapses can modify their strength in response to activity, and the unique properties of synapses that regulate their plasticity are essential for memory. Long-term potentiation (LTP) is considered the physiological basis for how neurons encode new memories. A complex series of postsynaptic signaling events in LTP is associated with memory deficits in tauopathy models, but the mechanism by which pathogenic tau inhibits plasticity at synapses is unknown.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil.
Background: Glutamatergic neurotransmission system dysregulation may play an important role in the pathophysiology of Alzheimer's disease (AD). However, reported results on glutamatergic components across brain regions are contradictory. Here, we conducted a systematic review with meta-analysis to examine whether there are consistent glutamatergic abnormalities in the human AD brain.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
University of Texas Medical Branch, Galveston, TX, USA.
Background: Alzheimer's disease (AD) is a common form of dementia characterized by the accumulation of amyloid beta (Aβ) and phosphorylated tau proteins in the brain. While clinical observations are typically used for AD diagnosis, postmortem studies have revealed individuals without dementia symptoms but with high AD pathology, known as resilient individuals. Calcium permeable AMPA receptors (CP-AMPARs) have been implicated in the calcium dyshomeostasis of AD, but it is unclear whether they are found or behave differently at the electrophysiological level in resilient and control individuals compared to AD patients.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Tulane University, New Orleans, LA, USA.
Background: Alzheimer's Disease (AD) is a prevalent age-related neurodegenerative condition leading to dementia, yet factors regulating its polygenomic etiology and progression remain elusive. MicroRNAs (miRNAs), small RNA molecules regulating protein expression, play a role in neurodegeneration. MicroRNA-34a (miR-34a) is a crucial regulator of numerous genes associated with neurodegenerative disorders, protein aggregation and synaptic transmission genes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!