Background: Parkinson's disease (PD) is a common neurodegenerative disease in the elderly. Freezing of Gait (FOG) is one of the common motor symptoms of PD, but the potential mechanism remains unclear. This study aimed to investigate the changes of brain functional network topology in PD patients with FOG.

Methods: The resting electroencephalogram (EEG) were acquired from15 PD patients with FOG (PD-FOG), 13 PD patients without FOG (PD-nFOG), and 16 healthy control (HC). Cognitive and motor functions were assessed using subjective scales. The whole-brain functional networks were constructed based on transfer entropy. Transfer entropy was used to analyse the information flow and causality in the network and the network connectivity was analyzed by graph theory. The characteristics of PD-FOG and PD-nFOG were compared by receiver operator characteristic (ROC) curve analysis.

Results: The θ bands brain network of PD-FOG, PD-nFOG and HC group was significantly different (P < 0.05). The average characteristic path length of the θ bands brain network was positively correlated with FOG Questionnaire (FOGQ). PD-FOG and PD-nFOG get high classification accuracy according to this feature. The information inflow in the frontal and occipital lobes and information outflow in the temporal lobe of PD-FOG patients in the θ bands increased significantly.

Conclusions: The whole-brain functional network characteristics of PD-FOG in the θ bands can serve as potential biomarkers for early diagnosis of PD-FOG. Abnormal information flow of the frontal, occipital, and temporal lobes in the θ bands may be an important factor leading to FOG.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.brainres.2023.148610DOI Listing

Publication Analysis

Top Keywords

transfer entropy
12
freezing gait
8
parkinson's disease
8
patients fog
8
pd-fog pd-nfog
8
study brain
4
brain networks
4
networks associated
4
associated freezing
4
gait parkinson's
4

Similar Publications

Artificial neural networks (ANNs) are one of the most promising tools in the quest to develop general artificial intelligence. Their design was inspired by how neurons in natural brains connect and process, the only other substrate to harbor intelligence. Compared to biological brains that are sparsely connected and that form sparsely distributed representations, ANNs instead process information by connecting all nodes of one layer to all nodes of the next.

View Article and Find Full Text PDF

High Entropy Fine-Tuning Achieves Fast Li Kinetics in High-Performance Co-Free High-Ni Layered Cathodes.

Adv Mater

January 2025

Key Laboratory of Power Station Energy Transfer Conversion and System of Ministry of Education and School of Energy Power and Mechanical Engineering, and Beijing Laboratory of New Energy Storage Technology, North China Electric Power University, Beijing, 102206, China.

Co-free high-Ni layered cathode materials LiNiMeO (Me = Mn, Mg, Al, etc.) are a key part of the next-generation high-energy lithium-ion batteries (LIBs) due to their high specific capacity and low cost. However, the hindered Li kinetics and the high reactivity of Ni result in poor rate performance and unsatisfied cycling stability.

View Article and Find Full Text PDF

Ultrasound-Assisted Enzymatic Extraction of the Active Components from Stem and Bioactivity Comparison with .

Molecules

January 2025

Key Laboratory of Forest Plant Ecology of Ministry of Education, Northeast Forestry University, Hexing Road 26, Harbin 150040, China.

(ASC) contains a variety of bioactive compounds and serves as an important traditional Chinese medicinal resource. However, its prolonged growth cycle and reliance on wild populations limit its practical use. To explore the potential of (ASF) as an alternative, this study focused on optimizing the extraction process and assessing the bioactivity of stem extracts.

View Article and Find Full Text PDF

This paper selects daily stock market trading data of RCEP member countries from 3 December 2007 to 9 December 2024 and employs the Time-Varying Parameter Vector Autoregression (TVP-VAR) model and transfer entropy to measure the time-varying volatility spillover effects among the stock markets of the sampled countries. The results indicate that the signing of the RCEP has strengthened the interconnectedness of member countries' stock markets, with an overall upward trend in volatility spillover effects, which become even more pronounced during periods of financial turbulence. Within the structure of RCEP member stock markets, China is identified as a net risk receiver, while countries like Japan and South Korea act as net risk spillover contributors.

View Article and Find Full Text PDF

Entropies in Electric Circuits.

Entropy (Basel)

January 2025

Electronics Engineering Department (DEEL), Energy, Power and Integrated Circuits (EPIC), Escola d'Enginyeria de Barcelona Est (EEBE), Universitat Politècnica de Catalunya-BarcelonaTech (UPC), Av. d'Eduard Maristany, 16 Edifici A Campus Besòs, 08029 Barcelona, Spain.

The present study examines the relationship between thermal and configurational entropy in two resistors in parallel and in series. The objective is to introduce entropy in electric circuit analysis by considering the impact of system geometry on energy conversion in the circuit. Thermal entropy is derived from thermodynamics, whereas configurational entropy is derived from network modelling.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!