Robust and versatile superhydrophobic cellulose-based composite film with superior UV shielding and heat-barrier performances for sustainable packaging.

Int J Biol Macromol

The Key Laboratory of Advanced Textile Materials and Manufacturing Technology of Ministry of Education, Key Laboratory of Intelligent Textile and Flexible Interconnection of Zhejiang Province, Zhejiang Sci-Tech University, Xiasha Higher Education Park Avenue 2 No. 928, Hangzhou 310018, China. Electronic address:

Published: December 2023

Replacing single-use plastic delivery bags (SPDBs) with cellulose-based materials is an effective strategy to reduce environmental pollution. However, the inherent hydrophilicity and ultralow mechanical strength of cellulose materials limit its development. In this study, zinc oxide (ZnO)-cellulose composite films were successfully prepared through "two-step strategy" of lotus leaves structure simulation, including deposition of micro-nano ZnO particles and stearic acid (STA) modification. Well-dispersed micro-nano ZnO particles with stick-like structure were anchored in the ZnO-cellulose composite film prepared at 90 °C (CF-90). Due to the special structural design and strong interaction between the cellulose and micro-nano ZnO particles, the CF-90 showed higher mechanical property (a 47.8 % improvement in the tensile strength). Impressively, CF-90 also exhibited great UV shielding properties with larger UPF value of 1603.98 and superhigh heat-barrier performance. Moreover, CF-90 obtained excellent superhydrophobicity with a water contact angle of 163.6° by further modification. Consequently, the versatile cellulose-based material bringing a dawn on application of sustainable packaging materials for express delivery industry.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2023.127178DOI Listing

Publication Analysis

Top Keywords

micro-nano zno
12
zno particles
12
composite film
8
sustainable packaging
8
zno-cellulose composite
8
robust versatile
4
versatile superhydrophobic
4
superhydrophobic cellulose-based
4
cellulose-based composite
4
film superior
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!