An engineered Yarrowia lipolytica strain was successfully employed to produce β-carotene and lipids from acetic acid, a product of syngas fermentation by Clostridium aceticum. The strain showed acetic acid tolerance up to concentrations of 20 g/L. Flask experiments yielded a peak lipid content of 33.7 % and β-carotene concentration of 13.6 mg/g under specific nutrient conditions. The study also investigated pH effects on production in bioreactors, revealing optimal lipid and β-carotene contents at pH 6.0, reaching 22.9 % and 44 mg/g, respectively. Lipid profiles were consistent across experiments, with C18:1 being the dominant compound at approximately 50 %. This research underscores a green revolution in bioprocessing, showing how biocatalysts can convert syngas, a potentially polluting byproduct, into valuable β-carotene and lipids with a Y. lipolytica strain.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biortech.2023.129815 | DOI Listing |
Food Chem
December 2024
School of Food Science and Technology, State Key Laboratory of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, China. Electronic address:
Salt enhances flavor and salinity in Chinese curing; however, excessive use can pose health risks, while reducing NaCl may harm taste. This study utilized targeted and untargeted metabolomics to investigate the intrinsic molecular mechanisms that drive flavor formation in cured sea bass subjected to salt. Glycine, succinic acid, lactic acid and uridine significantly contributed to the taste profile of the cured sea bass.
View Article and Find Full Text PDFFood Chem
December 2024
Department of Food Science and Technology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China. Electronic address:
Atemoya fruit deteriorates rapidly during post-harvest storage. A complete understanding of the metabolic mechanisms underlying this process is crucial for developing effective preservation strategies. Metabolomic approaches combined with machine learning offer new opportunities to identify quality-related biomarkers.
View Article and Find Full Text PDFJ Biochem Mol Toxicol
January 2025
Department of Biochemistry and Molecular Biology, Kunming Medical University, Kunming, China.
This study investigates the metabolic disruptions caused by nicotine (NIC) exposure, with a particular focus on amino acid and lipid metabolism, and evaluates resveratrol (RSV) as a potential protective agent. Mice were divided into four groups: control (CON), NIC-exposed, NIC + RSV-treated, and RSV-only. NIC exposure resulted in significant weight loss, elevated glucose levels, altered lipid profiles, and organ damage, particularly in the liver and kidneys.
View Article and Find Full Text PDFHepatol Int
January 2025
Division of Gastroenterology and Hepatology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan.
Background/purpose: Although metabolic dysfunction-associated steatotic liver disease (MASLD) has been proposed to replace the diagnosis of non-alcoholic fatty liver disease (NAFLD) with new diagnostic criteria since 2023, the genetic predisposition of MASLD remains to be explored.
Methods: Participants with data of genome-wide association studies (GWAS) in the Taiwan Biobank database were collected. Patients with missing data, positive for HBsAg, anti-HCV, and alcohol drinking history were excluded.
J Biomol Struct Dyn
January 2025
College of Applied Medical Sciences, lmam Abdulrahman Bin Faisal University (lAU), Dammam, Saudi Arabia.
The present study explores the conformational dynamics of the membrane protein of Middle East Respiratory Syndrome Coronavirus (MERS-CoV) within the Endoplasmic Reticulum-Golgi Intermediate Compartment (ERGIC) complex using an all-atomistic molecular dynamics simulation approach. Significant structural changes were observed in the N-terminal, C-terminal, transmembrane, and beta-sheet sandwich domains of the MERS-CoV membrane protein. This study also highlights the structural similarities between the MERS-CoV and the SARS-CoV-2 membrane proteins, particularly in how both exhibit a distinct kink in the transmembrane helix caused by aromatic residue-lipid interactions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!