Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
An engineered Yarrowia lipolytica strain was successfully employed to produce β-carotene and lipids from acetic acid, a product of syngas fermentation by Clostridium aceticum. The strain showed acetic acid tolerance up to concentrations of 20 g/L. Flask experiments yielded a peak lipid content of 33.7 % and β-carotene concentration of 13.6 mg/g under specific nutrient conditions. The study also investigated pH effects on production in bioreactors, revealing optimal lipid and β-carotene contents at pH 6.0, reaching 22.9 % and 44 mg/g, respectively. Lipid profiles were consistent across experiments, with C18:1 being the dominant compound at approximately 50 %. This research underscores a green revolution in bioprocessing, showing how biocatalysts can convert syngas, a potentially polluting byproduct, into valuable β-carotene and lipids with a Y. lipolytica strain.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biortech.2023.129815 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!