Ship oil spill accidents have a prolonged duration, complex consequences, challenging cleaning and repairing efforts, and pose a significant threat to the environment, economy, and society. Eliminating irrelevant information and identifying key factors using traditional methods is challenging due to the complexity of the causes of ship oil spill accidents. To address this, this article sorts out the accident databases of the International Tanker Owners Pollution Federation (ITOPF) and eight national maritime administration agencies, and innovatively constructs a formal concept analysis (FCA) model based on reports of 100-plus ship oil spill accidents. The model results prove that improper operation, less complete ship equipment, large tonnage, and poor navigation conditions are the key factors. The different causal rules of oil spills in collision/contact, grounding, fire/explosion, and foundering are further compared and analyzed. Finally, corresponding improvement measures are put forward for the key factors of oil spills and different causal rules.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.marpolbul.2023.115606 | DOI Listing |
Sci Total Environ
January 2025
Department of Marine Science, University of Gothenburg, 45178 Fiskebäckskil, Sweden.
Aiming to reduce sulfur oxides emission in the atmosphere, the International Maritime Organization developed regulations on shipping that came into effect in 2020. The new rules incentivized many owners to install scrubber systems on thousands of ships. However, the overall environmental implications of scrubbers is a controversial subject, largely due to the release of acids, metals, and chemicals in the oceans and impact on marine life.
View Article and Find Full Text PDFSci Rep
December 2024
School of architecture, Ocean and energy power engineering, Wuhan University of Technology, Wuhan, 430070, China.
During maritime operations, extreme events such as explosions, grounding, and seal failures can cause water ingress into lubricant compartments, forming oil-water emulsions that significantly affect the lubrication performance of ship stern bearings. Existing studies mainly focus on low water content, with limited exploration of the impact of high water content on lubrication performance. To address this gap, viscosity measurements of oil-water mixtures were conducted, and an emulsification viscosity equation applicable to varying water contents was derived.
View Article and Find Full Text PDFSci Total Environ
December 2024
Climate Policy Lab, ETH Zürich, 8092 Zürich, Switzerland; Laboratory for Energy Systems Analysis, PSI Center for Energy and Environmental Sciences, 5232 Villigen, Switzerland. Electronic address:
To reduce environmental impacts from the shipping industry, the FuelEU Maritime Regulation has set a binding 80 % reduction target for well-to-wake (WTW) greenhouse gas (GHG) emissions by 2050. This article presents a prospective life cycle assessment (LCA) comparing the environmental impacts of e-ammonia, e-methanol, e-Fischer Tropsch (FT) diesel, and e-liquefied natural gas (LNG)-for maritime applications in Europe. In addition to e-fuels, traditional propulsion technologies using very low sulfur fuel oil (VLSFO) and LNG are assessed, both with and without integrating ship-based carbon capture (SBCC) systems.
View Article and Find Full Text PDFMar Environ Res
November 2024
Laboratory for Assessment of Organic Contaminants (LACOr), Institute of Marine Sciences-Federal University of Ceará (LABOMAR/UFC), Av. Abolição, 3207-Meireles, CEP: 60165-081, Fortaleza, CE, Brazil; Tropical Marine Sciences Program/LABOMAR/UFC, Brazil; Laboratory of Petroleum Engineering and Exploration (LENEP), North Fluminense State University (UENF), Macaé, Rio de Janeiro 27925-535, Brazil. Electronic address:
Sci Rep
November 2024
Department of Information and Communication Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea.
Synthetic Aperture Radar (SAR) integrated with deep learning has been widely used in several military and civilian applications, such as border patrolling, to monitor and regulate the movement of people and goods across land, air, and maritime borders. Amongst these, maritime borders confront different threats and challenges. Therefore, SAR-based ship detection becomes essential for naval surveillance in marine traffic management, oil spill detection, illegal fishing, and maritime piracy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!