Root chemistry and microbe interactions contribute to metal(loid) tolerance of an aromatic plant - Vetiver grass.

J Hazard Mater

Guangdong Provincial Research Centre for Environment Pollution Control and Remediation Materials, Department of Ecology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China. Electronic address:

Published: January 2024

Aromatic plants, such as vetiver grass (Chrysopogon zizanioides), possess strong abilities to resist environmental stresses. However, whether such abilities stem from the interaction between specific chemical characteristics and the associated microbes in roots and rhizosphere remains unclear. We conducted pot experiments to analyze stress-tolerant parameters, organic compounds, and bacterial communities in roots and rhizosphere of vetiver under typical metal(loid) stress [cadmium (Cd), arsenic (As), or Cd + As] over time. The results showed that the vetiver displayed limited toxic symptoms in terms of oxidative stress-antioxidant balance and chlorophyll content. The root low-molecular-weight organic acids (LMWOAs), fatty acids, and sterols were highly sensitive to growth stage (increased from the 4-month to the 8-month stage), and less sensitive to metal(loid) stress. The sugar contents in the rhizosphere soils also notably increased over time. Such endo and rhizosphere chemical changes strongly correlated with and enriched the functional bacteria including Streptomyces, which can resist stress and promote plant growth. The compound-bacteria interaction highly depended on growth stage. Vetiver demonstrated a progressive adaptation to stresses through metabolite modulation and cellular defense reinforcement. Our study evidenced that vetiver shapes the interaction between organic compounds and bacterial community in the root-soil interface and provides notable stress-resistant functions.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhazmat.2023.132648DOI Listing

Publication Analysis

Top Keywords

vetiver grass
8
roots rhizosphere
8
organic compounds
8
compounds bacterial
8
metalloid stress
8
growth stage
8
vetiver
6
root chemistry
4
chemistry microbe
4
microbe interactions
4

Similar Publications

Textile wastewater poses significant risks if discharged untreated, especially due to the presence of synthetic dyes, salts, and heavy metals. As a result, constructed wetlands have emerged as a promising solution for sustainable textile wastewater management. In this context, this study evaluates a micro-scale vertical subsurface flow constructed wetland (VSSFCW) for treating textile wastewater.

View Article and Find Full Text PDF

This study evaluates the effectiveness of phytoremediation strategies in mitigating the environmental impacts of gold mine tailings through a bibliometric and systematic review. Utilizing the PRISMA methodology, 45 primary research articles were selected and analyzed, highlighting key rends and insights in phytoremediation research. The review spans over two decades of research, with a notable annual growth rate of 2.

View Article and Find Full Text PDF
Article Synopsis
  • Metal toxicity impacts plant physiology, and mycorrhizal fungi (AMF) offer a new eco-friendly method to improve soil contaminated by tannery effluents, which are high in harmful metals like chromium and cadmium.* -
  • A study was conducted using vetiver grass and three strains of AMF on contaminated soil from Tamil Nadu, revealing that AMF inoculation, particularly with R. intraradices, boosted plant growth and biomass significantly compared to other treatments.* -
  • Results indicated that R. intraradices improved the phytoextraction of metals, reduced their movement into plant shoots, and increased carbon storage in vetiver, enhancing overall carbon sequestration in contaminated soil.*
View Article and Find Full Text PDF
Article Synopsis
  • The study explored the effects of Vetiveria zizanioides oil (VET) on oxidative stress and cell death in rats that experienced seizures induced by pentylenetetrazol (PTZ).
  • Four groups of rats were observed: a control group, a PTZ only group, and two groups receiving different doses of VET alongside the PTZ treatment.
  • Findings indicated that PTZ increased seizure activity and caused oxidative stress, but treatment with VET significantly reduced these negative effects and improved the overall condition of the rats' brain tissues.
View Article and Find Full Text PDF

The role of plant uptake in total phosphorous and total nitrogen removal in vegetated bioretention cells using vetiver and cattail.

Chemosphere

September 2024

State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China; Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Shenzhen, 518055, China. Electronic address:

Bioretention cells have emerged as a prominent strategy for mitigating pollutant loads within urban stormwater runoff. This study delves into the role of plant uptake in the simultaneous removal of nitrogen and phosphorus compounds within these systems. Three bioretention cells-CP, P1, and P2-were constructed using local soil, C33 sand, and gravel.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!