Using fast infrared heating technology to minimize the pyrolysis temperature differential and optimizing secondary reactions is advantageous for studying co-pyrolysis behaviors. In this study, the co-pyrolysis behaviors of waste tyres (WT) and corn stover (CS), including product distribution, pyrolysis kinetics, and thermodynamics, were studied using TGA-FTIR analysis and fast infrared heating reactor. The DTG curves for the co-pyrolysis of WT and CS significantly differed from the calculated values, implying that the pyrolysis intermediates produced by CS during the pyrolysis process may have synergetic effects with the pyrolysis of WT. The apparent activation energies using the Kissinger-Akahira-Sunose (KAS) and Flynn-Wall-Ozawa (FWO) methods were similar, 244.88 kJ/mol and 245.93 kJ/mol, respectively. The experiment results suggest that the bio-oil yield increased first and then decreased with a further temperature increase. The yield of bio-oil gradually increased from 35.36% to 46.06% as temperature rose from 500 °C to 700 °C; but the further increasing to 800 °C decreased the bio-oil yield to 40.72%. The aromatic compounds in tar gradually increased with increasing the temperature, while the aliphatic compounds increased initially and then reduced. Meanwhile, the oxygenated compounds first decreased and then increased with increasing the pyrolysis temperature. The yield of light oil components (C<10) increased from 5.11% at 400 °C to 7.71% at 700 °C. A further increase in the pyrolysis temperature to 800 °C reduced the light oil content to 4.93%.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.wasman.2023.09.037 | DOI Listing |
Sci Rep
January 2025
Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India.
Hydroxyapatite (HA) is an important constituent of natural bone. The properties of HA can be enhanced with the help of various ionic substitutions in the crystal lattice of HA. Iron (Fe) is a vital element present in bones and teeth.
View Article and Find Full Text PDFPharmaceutics
December 2024
Department of Pharmacognosy and Biomaterials, Poznan University of Medical Sciences, 3 Rokietnicka St., 60-806 Poznan, Poland.
Curcumin and hesperetin are plant polyphenols known for their poor solubility. To address this limitation, we prepared amorphous PVP K30-phosphatidylcholine dispersions via hot-melt extrusion. This study aimed to evaluate the effects of the amounts of active ingredients and phosphatidylcholine, as well as the process temperature, on the performance of the dispersions.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
IME Process Metallurgy and Metal Recycling, RWTH Aachen University, Intzestrasse 3, 520056 Aachen, Germany.
The glycine nitrate procedure (GNP) is a method that proved to be the easiest and most effective method for controlling the composition and morphology during the synthesis of CoRMoO (R = Ho, Yb, Gd). This method of the combustion process achieves control of stoichiometry, homogeneity, and purity. Metal nitrates and glycine were mixed in the appropriate stoichiometric ratios to produce CoRMoO (R = Ho, Yb, Gd).
View Article and Find Full Text PDFBiomater Adv
January 2025
College of Physical Science and Technology, Central China Normal University, Wuhan 430079, China. Electronic address:
In this study, we developed an innovative CuSe/PDA/AIPH nanoparticle platform that combines photothermal therapy and chemotherapy for effective tumor treatment. The CuSe nanoparticles, known for their strong near-infrared (NIR) absorption, were encapsulated within a polydopamine (PDA) and 2,2'-azobis[2-(2-imidazolin-2-yl)propane] dihydrochloride (AIPH) matrix. Upon NIR irradiation, the platform triggers localized heating and subsequent thermal decomposition of AIPH, releasing ROS to induce significant oxidative damage in tumor cells.
View Article and Find Full Text PDFBiomater Adv
January 2025
Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, School of Basic Medical Sciences and Life Sciences, Hainan Medical University, Haikou 571199, China. Electronic address:
Bacterial infections present a significant threat to human health, a challenge that is intensified by the slow pace of novel antibiotic development and the swift emergence of bacterial resistance. The development of novel antibacterial agents is crucial. Indocyanine green (ICG), a widely used imaging dye, efficiently generates reactive oxygen species (ROS) and heat for treating bacterial infections but suffers from aggregation and instability, limiting its efficacy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!