Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
This research aimed to approach relationships between metal mixture in blood and kidney function, tumor necrosis factor alpha (TNF-α) by machine learning. Metals levels were measured by Inductively Couple Plasma Mass Spectrometry in blood from 421 participants. We applied K Nearest Neighbor (KNN), Naive Bayes classifier (NB), Support Vector Machines (SVM), random forest (RF), Gradient Boosting Decision Tree (GBDT), Categorical boosting (CatBoost), eXtreme Gradient Boosting (XGBoost), Whale Optimization-based XGBoost (WXGBoost) to identify the effect of plasma metals, TNF-α, and estimated glomerular filtration rate (eGFR by CKD-EPI equation). We conducted not only toxic metals, lead (Pb), arsenic (As), cadmium (Cd) but also included trace essential metals, selenium (Se), copper (Cu), zinc (Zn), cobalt (Co), to predict the interaction of TNF-α, TNF-α/white blood count, and eGFR. The high average TNF-α level group was observed among subjects with higher Pb, As, Cd, Cu, and Zn levels in blood. No associations were shown between the low and high TNF-α level group in blood Se and Co levels. Those with lower eGFR group had high Pb, As, Cd, Co, Cu, and Zn levels. The crucial predictor of TNF-α level in metals was blood Pb, and then Cd, As, Cu, Se, Zn and Co. The machine learning revealed that As was the major role among predictors of eGFR after feature selection. The levels of kidney function and TNF-α were modified by co-exposure metals. We were able to acquire highest accuracy of over 85% in the multi-metals exposure model. The higher Pb and Zn levels had strongest interaction with declined eGFR. In addition, As and Cd had synergistic with prediction model of TNF-α. We explored the potential of machine learning approaches for predicting health outcomes with multi-metal exposure. XGBoost model added SHAP could give an explicit explanation of individualized and precision risk prediction and insight of the interaction of key features in the multi-metal exposure.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ecoenv.2023.115528 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!