Using solar photocatalytic CO reduction to produce high-value-added products is a promising solution to environmental problems caused by greenhouse gases. Metal phthalocyanine COFs possess a suitable band structure and strong light absorption ability, making them a promising candidate for photocatalytic CO reduction. However, the relationship between the electronic structure of these materials and photocatalytic properties, as well as the mechanism of photocatalytic CO reduction, is still unclear. Herein, the electronic structure of three MPc-TFPN-COFs (M = Ni, Co, Fe) and the reaction process of CO reduction to CO, HCOOH, HCHO and CHOH were studied using DFT calculations. The calculated results demonstrate that these COFs have a good photo response to visible light and are new potential photocatalytic materials. Three COFs show different reaction mechanisms and selectivity in generating CO reduction products. NiPc-TFPN-COFs obtain CO through the reaction pathway of CO → COOH → CO, and the energy barrier of the rate-determining step is 2.82 eV. NiPc-TFPN-COFs and FePc-TFPN-COFs generate HCHO through CO → COOH → CO → CHO → HCHO, and the energy barrier of the rate step is 2.82 eV and 2.37 eV, respectively. Higher energies are required to produce HCOOH and CHOH. This work is helping in understanding the mechanism of photocatalytic reduction of CO in metallophthalocyanine COFs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d3nr04387h | DOI Listing |
Angew Chem Int Ed Engl
December 2024
Huazhong University of Science and Technology, School of Chemistry and Chemical Engineering, CHINA.
Porous organic polymers have shown great potential in photocatalytic CO2 reduction due to their unique tunable structure favoring gas adsorption and metal sites integration. However, efficient photocatalysis in porous polymers is greatly limited by the low surface reactivity and electron mobility of bulk structure. Herein, we incorporate TiO2 nanoparticles and Ni(II) sites into a layered cationic imidazolium polymer (IP), in which the imidazolium moieties and free anions can stabilize the key intermediates and enhance the reaction kinetics of CO2 reduction.
View Article and Find Full Text PDFInorg Chem
December 2024
Key Laboratory of Catalytic Conversion and Clean Energy in Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China.
The photocatalytic conversion of carbon dioxide (CO) into "liquid sunshine" methanol (CHOH) using semiconductor catalysts has garnered significant attention. Increasing the number of effective electrons and regulating reaction pathways is the key to improving the activity and selectivity of CHOH. Due to the electron transport properties of semiconductor heterojunctions and reduced graphene oxide (rGO), a CoS/CoS-rGO nanocomposite was constructed and applied to the photocatalytic reduction of CO to CHOH.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
December 2024
Department of Chemistry, National Institute of Technology, Silchar, 788010, Assam, India.
In this work, Terminalia chebula leaf extract was used to synthesize CuO-CoO nanoparticles, which were then embedded in a rice straw biochar. This new biochar-based nano-catalyst is used to photocatalytically degrade a variety of dyes (Eosin Y, Trypan Blue, Crystal Violet, Methylene Blue, Brilliant Green), as well as a binary mixture of Eosin Y and Trypan Blue dyes. It is also used for the catalytic reduction of nitro compounds (4-NP, 3-NP, and Picric acid).
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
December 2024
Laboratório de Cerâmica Técnica (CerTec), Grupo de Biomateriais E Materiais Nanoestruturados, Programa de Pós-Graduação Em Ciência E Engenharia de Materiais (PPGCEM), Universidade Do Extremo Sul Catarinense, Criciúma, SC, CEP 88806-000, Brazil.
Magnetic composites (MC) prepared from magnetite nanoparticles (MNP) and activated carbon from bovine bone (AC) in different proportions (75/25, 50/50, and 25/75) were used as catalysts in the photo-Fenton process to degrade methylene blue (MB) in aqueous solution. The materials were prepared by the citrate-nitrate sol-gel synthesis method and used as catalysts in the photo-Fenton process. The photocatalytic tests were performed in a cylindrical reactor with a 4.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Mining Engineering, Faculty of Engineering, University of Birjand, Birjand, Iran.
To tackle the challenges of increasing the efficiency of photocatalysts, a ternary magnetic heterojunction photocatalyst containing spinel cobalt and zinc ferrites, and zeolite (CZZ) was designed and fabricated. The physicochemical properties of the novel photocatalyst were verified using characterization techniques such as XRD, FT-IR, FE-SEM, EDS mapping, N adsorption-desorption, VSM, PL, and UV-Vis DRS. The CZZ photocatalyst exhibited a significant Cr (VI) reduction rate of 0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!