Although several scores stratify venous thromboembolism (VTE) risk in solid tumors, hematologic malignancies (HM) are underrepresented. To develop an internal and external validation of a logistic regression model to predict VTE risk in hospitalized HM patients. Validation of the existing VTE predictive model was performed through a prospective case-control study in 496 hospitalized HM patients between December 2010 and 2020 at the Arnaldo Milián University Hospital, Cuba. The predictive model designed with data from 285 patients includes 5 predictive factors: hypercholesterolemia, tumoral activity, use of thrombogenic drugs, diabetes mellitus, and immobilization. The model was internally validated using bootstrap analysis. External validation was realized in a prospective cohort of 211 HM patients. The predictive model had a 76.4% negative predictive value (NPV) and an 81.7% positive predictive value (PPV) in the bootstrapping validation. The area under curve (AUC) in the bootstrapping set was 0.838. Accuracy was 80.1% and 82.9% in the internal and external validation, respectively. In the external validation, the model produced 89.7% of NPV, 67.7% of PPV, 74.6% of sensitivity, and 86.2% of specificity. The AUC in the external validation was 0.900. VTE predictive model is a reproducible and simple tool with good accuracy and discrimination.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00277-023-05463-4DOI Listing

Publication Analysis

Top Keywords

predictive model
20
external validation
20
validation
8
venous thromboembolism
8
predictive
8
model
8
hematologic malignancies
8
vte risk
8
internal external
8
hospitalized patients
8

Similar Publications

The human microbiota may influence the effectiveness of drug therapy by activating or inactivating the pharmacological properties of drugs. Computational methods have demonstrated their ability to screen reliable microbe-drug associations and uncover the mechanism by which drugs exert their functions. However, the previous prediction methods failed to completely exploit the neighborhood topologies of the microbe and drug entities and the diverse correlations between the microbe-drug entity pair and the other entities.

View Article and Find Full Text PDF

Importance: Hypertension underpins significant global morbidity and mortality. Early lifestyle intervention and treatment are effective in reducing adverse outcomes. Artificial intelligence-enhanced electrocardiography (AI-ECG) has been shown to identify a broad spectrum of subclinical disease and may be useful for predicting incident hypertension.

View Article and Find Full Text PDF

Background: Radiation segmentectomy (RS) is an alternative potential local curative treatment for selected colorectal liver metastases (CLMs) not amenable to ablation or limited resection.

Purpose: The aim of this study was to evaluate the dosimetric response of low volume CLMs to RS in heavily pretreated patients who are not candidates for resection or percutaneous ablation.

Patients And Methods: This single-center retrospective study evaluated CLMs patients treated with RS (prescribed tumor dose >190 Gy) from 2015 to 2023.

View Article and Find Full Text PDF

Women are disproportionately affected by chronic autoimmune diseases (AD) like systemic lupus erythematosus (SLE), scleroderma, rheumatoid arthritis (RA), and Sjögren's syndrome. Traditional evaluations often underestimate the associated cardiovascular disease (CVD) and stroke risk in women having AD. Vitamin D deficiency increases susceptibility to these conditions.

View Article and Find Full Text PDF

This study aimed to test age-related changes in sternal fusion and sternal-rib cartilage ossification on multi-slice computed tomography (MSCT) images of the Croatian population. The additional aim was to develop models to estimate age and provide an interface for the model's application and validation. This retrospective study was conducted on 144 MSCT images of the sternal region, and the developed models were tested on 36 MSCT images.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!