A compact low energy proton source.

Rev Sci Instrum

Stefan-Meyer-Institute for Subatomic Physics, Austrian Academy of Sciences, Kegelgasse 27, 1030 Wien, Austria.

Published: October 2023

A low energy proton source for non-neutral plasma experiments was developed. Electrons from a hot filament ionize H2 gas inside a geometrically compensated Penning trap to produce protons via dissociative ionization. A rotating wall electric field destabilizes the unwanted H2+ and H3+ generated in the process while concentrating protons at the center of the trap. The source produces bunches of protons with relatively low ion contamination (5.5% H2+ and 15.5% H3+), with energy tunable from 35 to 300 eV.

Download full-text PDF

Source
http://dx.doi.org/10.1063/5.0162339DOI Listing

Publication Analysis

Top Keywords

low energy
8
energy proton
8
proton source
8
compact low
4
source low
4
source non-neutral
4
non-neutral plasma
4
plasma experiments
4
experiments developed
4
developed electrons
4

Similar Publications

Introduction: The purpose of this study was to review rates of infection after civilian ballistic fractures and assess the effect of early antibiotic administration (EAA) on infection rates.

Methods: This was a retrospective cohort study done at an urban Level 1 Trauma Center. Patients ages 16 years and older with ballistic orthopaedic extremity injuries between May 2018 and December 2020 were enrolled.

View Article and Find Full Text PDF

Ultrasensitive Detection of Circulating Plasma Cells Using Surface-Enhanced Raman Spectroscopy and Machine Learning for Multiple Myeloma Monitoring.

Anal Chem

January 2025

Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Fujian Normal University, Fuzhou, Fujian 350117, China.

Multiple myeloma is a hematologic malignancy characterized by the proliferation of abnormal plasma cells in the bone marrow. Despite therapeutic advancements, there remains a critical need for reliable, noninvasive methods to monitor multiple myeloma. Circulating plasma cells (CPCs) in peripheral blood are robust and independent prognostic markers, but their detection is challenging due to their low abundance.

View Article and Find Full Text PDF

A methodology is proposed, which addresses the caveat that line-of-sight emission spectroscopy presents in that it cannot provide spatially resolved temperature measurements in non-homogeneous temperature fields. The aim of this research is to explore the use of data-driven models in measuring temperature distributions in a spatially resolved manner using emission spectroscopy data. Two categories of data-driven methods are analyzed: (i) Feature engineering and classical machine learning algorithms, and (ii) end-to-end convolutional neural networks (CNN).

View Article and Find Full Text PDF

Structural design and safety performance of a novel high-strength steel lightweight guardrail.

PLoS One

January 2025

Key Laboratory of Road and Traffic Engineering of Ministry of Education, Tongji University, Shanghai, China.

Highway guardrails are critical safety infrastructure along roadways, designed to redirect vehicles back into their lanes and facilitate a gradual deceleration to a complete stop. Traditional highway steel guardrails exhibit significant limitations, including inadequate energy absorption, susceptibility to corrosion, and an increased risk of vehicles leaving the roadway during severe collisions. Furthermore, the production and transportation of these guardrails contribute to substantial carbon emissions and environmental pollution.

View Article and Find Full Text PDF

Glaciers serve as natural archives for reconstructing past changes of atmospheric aerosol concentration and composition. While most ice-core studies have focused on inorganic species, organic compounds, which can constitute up to 90% of the submicrometer aerosol mass, have been largely overlooked. To our knowledge, this study presents the first nontarget screening record of secondary organic aerosol species preserved in a Belukha ice core (Siberia, Russian Federation), ranging from the pre-industrial to the industrial period (1800-1980 CE).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!