A 60-year-old woman with a ∼450 cm 2 right cervicofacial defect following successful treatment of necrotizing fasciitis was consulted for reconstruction. She had complete orbital, malar, buccal, labial, submental, and anterolateral neck skin and soft tissue defects and near complete defects of the forehead and nasal sidewall. She underwent reconstruction with a large 24 cm×11 cm supraclavicular, deltopectoral, forehead rotational, and labial advancement flaps with skin grafting of the orbit. Follow-up at 2 months demonstrated complete take of all flaps. The patient was satisfied with her appearance and considered her outcome favorable. She exhibited comparably premorbid speech and oral competence. Large defects of the head and neck require thorough surgical planning and consideration of a subunit reconstruction technique. While free tissue transfer provides a large area of healthy tissue from a suitable donor site, subunit reconstruction with local and regional flaps can provide a superior outcome in the correct patient.

Download full-text PDF

Source
http://dx.doi.org/10.1097/SCS.0000000000009714DOI Listing

Publication Analysis

Top Keywords

subunit reconstruction
12
reconstruction local
8
local regional
8
regional flaps
8
cervicofacial defect
8
necrotizing fasciitis
8
flaps
4
flaps total
4
total cervicofacial
4
defect necrotizing
4

Similar Publications

Capturing eukaryotic ribosome dynamics in situ at high resolution.

Nat Struct Mol Biol

January 2025

Key Laboratory of Biomacromolecules (CAS), National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.

Many protein complexes are highly dynamic in cells; thus, characterizing their conformational changes in cells is crucial for unraveling their functions. Here, using cryo-electron microscopy, 451,700 ribosome particles from Saccharomyces cerevisiae cell lamellae were obtained to solve the 60S region to 2.9-Å resolution by in situ single-particle analysis.

View Article and Find Full Text PDF

FAT1 knockdown enhances the CSC properties of HNSCC through p-CaMKII-mediated inactivation of the IFN pathway.

Int J Biol Sci

January 2025

State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, China.

FAT atypical cadherin 1 (), which encodes an atypical cadherin-coding protein, has a high mutation rate and is commonly regarded as a tumor suppressor gene in head and neck squamous cell carcinoma (HNSCC). Nonetheless, the potential regulatory mechanisms by which FAT1 influences the progression of HNSCC remain unresolved. In this context, we reported that FAT1 was downregulated in tumor tissues/cells compared with normal tissues/cells and that it was correlated with the clinicopathological features and prognosis of HNSCC.

View Article and Find Full Text PDF

Multigene, genus-wide phylogenetic studies have uncovered the limited taxonomic resolution power of commonly used gene markers, particularly of rRNA genes, to discriminate closely related species of the nematode genus Heterorhabditis. In addition, conflicting tree topologies are often obtained using the different gene markers, which limits our understanding of the phylo- and co-phylogenetic relationships and biogeography of the entomopathogenic nematode genus Heterorhabditis. Here we carried out phylogenomic reconstructions using whole nuclear and mitochondrial genomes, and whole ribosomal operon sequences, as well as multiple phylogenetic reconstructions using various single nuclear and mitochondrial genes.

View Article and Find Full Text PDF

Ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) is an ancient protein critical for CO2-fixation and global biogeochemistry. Form-I RuBisCO complexes uniquely harbor small subunits that form a hexadecameric complex together with their large subunits. The small subunit protein is thought to have significantly contributed to RuBisCO's response to the atmospheric rise of O2 ∼2.

View Article and Find Full Text PDF

Variable Assembly and Procapsid Binding of Bacteriophage P22 Terminase Subunits in Solution.

Pathogens

December 2024

Laboratory of Macromolecular Structure, Department of Molecular Biology and Biochemistry, University of California Irvine, Steinhaus Hall, Irvine, CA 92697-3900, USA.

Concatemeric viral DNA is packaged into bacteriophage P22 procapsids via a headful packaging mechanism mediated by a molecular machine consisting of small (gp3) and large (gp2) terminase subunits. Although a negative stain reconstruction exists for the terminase holoenzyme, it is not clear how this complex binds the dodecameric portal protein located at a 5-fold mismatch vertex. Herein, we describe new assemblies for the holoenzyme.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!