Studies on the [4 + 2] cycloaddition and allylic substitution of indole-fused zwitterionic π-allylpalladium.

Org Biomol Chem

Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China.

Published: October 2023

The zwitterionic π-allylpalladium species, also known as dipoles, are important synthons widely used in various reactions including cycloaddition and allylic substitution. This study reported the development of a new indole-fused zwitterionic π-allylpalladium precursor compound and its application in [4 + 2] cycloaddition and allylic substitution reactions. As a result, the synthesis of pyrrolo[3,2,1-]quinazolin-3-one and 7-vinyl indole compounds was achieved with moderate to good yields. Notably, the allylic substitution reaction exhibited excellent regio- and stereoselectivity.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d3ob01451gDOI Listing

Publication Analysis

Top Keywords

allylic substitution
16
cycloaddition allylic
12
zwitterionic π-allylpalladium
12
indole-fused zwitterionic
8
studies cycloaddition
4
allylic
4
substitution
4
substitution indole-fused
4
π-allylpalladium zwitterionic
4
π-allylpalladium species
4

Similar Publications

Regio- and Enantioselective Rhodium-Catalyzed Allylic Arylation of Racemic Allylic Carbonates with Arylboronic Acids.

Angew Chem Int Ed Engl

January 2025

Shanghai Inst Org Chem, State Key Lab Organometallic Chem, 345 Lingling Lu, 200032, Shanghai, CHINA.

Rhodium-catalyzed regio- and enantioselective allylic arylation of racemic alkyl- and aryl- substituted allylic carbonates with arylboronic acids using commercially available BIBOP ligand is reported. This reaction proceeds at room temperature without base or other additive to deliver allylic arylation products in excellent yields, regio- and enantioselectivity (up to 95% yield, >20:1 b/l, >99% ee). Rh/BIBOP is disclosed as an efficient catalytic system for allylic substitution reaction.

View Article and Find Full Text PDF

Dynamic Kinetic Activation of Aziridines Enables Radical-Polar Crossover (4 + 3) Cycloaddition with 1,3-Dienes.

J Am Chem Soc

January 2025

State Key Laboratory of Applied Organic Chemistry & College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China.

The cycloaddition of aziridines with unsaturated compounds is a valuable method for synthesizing nitrogen heterocycles. However, this process is predominantly substrate-controlled, posing significant challenges in regulating the regioselectivity of the C-N bond cleavage. In this study, we report a nickel-catalyzed dynamic kinetic activation strategy that enables catalyst-controlled activation of aziridines.

View Article and Find Full Text PDF

One-Pot Domino Catalysis to Construct Alkyl/Aryl Pyrroles Initiated by Pd-TMM Annulation of Unactivated Imines.

Org Lett

January 2025

China Guangxi Key Laboratory of Pharmaceutical Precision Detection and Screening, Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation, and Key Laboratory of Micro-Nanoscale Bioanalysis and Drug Screening of Guangxi Education Department, Pharmaceutical College, Guangxi Medical University, Nanning 530021, China.

Herein, a one-pot domino catalyzed three-component process is described, which is initiated by a palladium/zinc cooperatively catalyzed cycloaddition between trimethylenemethane (TMM) and unactivated alkyl/aryl imines, followed by one-pot isomerization and Zn(OTf)-catalyzed DDQ oxidation, furnishing valuable substituted pyrroles. We disclose that the palladium/zinc cooperative catalysis affords a dual-Zn(OTf)-stabilized azapalladacycle, wherein the Pd-N bond is polarized by Zn(OTf), facilitating a unique outer-sphere allylic amination. Moreover, subsequent DDQ dehydrogenation can be feasibly promoted by zinc catalysis.

View Article and Find Full Text PDF

Chiral allyl amines are important structural components in natural products, pharmaceuticals, and chiral catalysts. Herein, we report a cobalt-catalyzed enantioselective reductive coupling of imines with internal alkynes to synthesize chiral allyl amines. The reaction is catalyzed by a cobalt complex derived from commercially available bisphosphine ligand utilizing zinc as the electron donor.

View Article and Find Full Text PDF

Dirhodium-Palladium Dual-Catalyzed [1 + 1 + 3] Annulation to Heterocycles Using Primary Amines or HO as the Heteroatom Sources.

J Am Chem Soc

January 2025

State Key Laboratory of Organometallic Chemistry and Shanghai Hongkong Joint Laboratory in Chemical Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China.

The ever-increasing demand in chemical biology and medicinal research requires the development of new synthetic methods for the rapid construction of libraries of heterocycles from simple raw materials. In this context, the utilization of primary amines or HO as the simple - or -sources in the assembly of a heterocyclic ring skeleton is highly desirable from the viewpoint of atom- and step-economy. Herein, we describe a highly efficient three-component reaction of diazo, allylic diacetates, and commercially available anilines (or HO) to access structurally diverse pyrrolidine and tetrahydrofuran derivatives.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!