Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Ultrasonic phased array imaging using full-matrix capture (FMC) has raised great interest among various communities, including the nondestructive testing community, as it makes full use of the echo space to provide preferable visualization performance of inhomogeneities. The conventional way of FMC data postprocessing for imaging is through beamforming approaches, such as delay-and-sum, which suffers from limited imaging resolution and contrast-to-noise ratio. To tackle these difficulties, we propose a deep learning (DL)-based image forming approach, termed FMC-Net, to reconstruct high-quality ultrasonic images directly from FMC data. Benefitting from the remarkable capability of DL to approximate nonlinear mapping, the developed FMC-Net automatically models the underlying nonlinear wave-matter interactions; thus, it is trained end-to-end to link the FMC data to the spatial distribution of the acoustic scattering coefficient of the inspected object. Specifically, the FMC-Net is an encoder-decoder architecture composed of multiscale residual modules that make local perception at different scales for the transmitter-receiver pair combinations in the FMC data. We numerically and experimentally compared the DL imaging results to the total focusing method and wavenumber algorithm and demonstrated that the proposed FMC-Net remarkably outperforms conventional methods in terms of exceeding resolution limit and visualizing subwavelength defects. It is expected that the proposed DL approach can benefit a variety of ultrasonic array imaging applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1121/10.0021171 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!