New immunostimulatory antibody drugs designed to either directly stimulate specific immune cells or indirectly enhance the immune response by blocking or activating an endogenous regulator of the immune system have the potential to cause serious immune-related adverse events such as cytokine release syndrome (CRS). It is, therefore crucial to assess the safety profile of such drugs with a combination of in vivo and in vitro experiments before first-in-human dose administration. Cytokine release assays (CRAs), where the proposed antibody therapeutic is co-cultured with human immune cells (such as peripheral blood mononuclear cells (PBMCs), whole blood, or otherwise) and the amount of inflammatory cytokine produced is measured, are critical for hazard identification. However, different labs using different control antibodies can threaten the harmonization of CRAs, and clinically relevant controls (such as TGN1412) can be difficult to source, which can lead to less accurate or reliable results or data which are difficult to compare between laboratories. The inclusion of positive and negative controls in a CRA can ensure the accuracy and reliability of the results. The National Institute for Biological Standards and Control (NIBSC) has produced a panel of lyophilized antibody controls intended for use in various CRA platforms to harmonize results across various laboratories and assay methods. A set of three different positive control antibodies include anti-CD52, anti-CD3, and anti-CD28 superagonist (SA), which are known to induce dose-dependent CRS in patients. Each antibody is provided with an isotype-matched negative control antibody. This panel of reference reagents has previously been shown to have good inter-lab reproducibility and are suitable controls to increase the confidence and robustness of safety data from a variety of CRA platforms.

Download full-text PDF

Source
http://dx.doi.org/10.3791/65087DOI Listing

Publication Analysis

Top Keywords

cytokine release
12
reference reagents
8
release assays
8
immune cells
8
control antibodies
8
cra platforms
8
antibody
6
reagents confirm
4
confirm robustness
4
cytokine
4

Similar Publications

Introduction: Hemoperfusion (HP), a blood filtration method targeting the removal of toxins and inflammatory elements, was investigated in this study. The objective was to present the observations in four individuals with confirmed COVID-19 who underwent several rounds of HP utilizing the HA330 cartridge at a hospital in Indonesia.

Case Studies: We report four cases of COVID-19 patients who underwent HP.

View Article and Find Full Text PDF

Mechanical Wear of Degraded Articular Cartilage.

Ann Biomed Eng

January 2025

School of Mechanical Engineering, Purdue University, West Lafayette, IN, 47907, USA.

Purpose: To evaluate the mechanical wear of cartilage with different types of degradation.

Methods: Bovine osteochondral explants were treated with interleukin-1β (IL-1β) to mimic inflammatory conditions, with chondroitinase ABC (ChABC) to specifically remove glycosaminoglycans (GAGs), or with collagenase to degrade the collagen network during 5 days of culture. Viscoelastic properties of cartilage were characterized via indentation.

View Article and Find Full Text PDF

CAFs-released exosomal CREB1 promotes cell progression and immune evasion in thyroid cancer via the positive regulation of CCL20.

Autoimmunity

December 2025

Department of Thyroid Head and Neck Surgery, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China.

Background: Exosomes derived from cancer-associated fibroblasts (CAFs) can affect tumor microenvironment (TME) of thyroid cancer (TC). The cAMP response element binding protein 1 (CREB1) acts as a transcription factor to participate in cancer development. Currently, we aimed to explore the molecular mechanism of exosome-associated CREB1 and C-C motif chemokine ligand 20 (CCL20) in TC.

View Article and Find Full Text PDF

Metabolic rewiring underlies effective macrophages defense to respond disease microenvironment. However, the underlying mechanisms driving metabolic rewiring to enhance macrophage effector functions remain unclear. Here, we demonstrated that the metabolic reprogramming in inflammatory macrophages depended on the acetylation of CLYBL, a citramalyl-CoA lyase, at lysine 154 (K154), and blocking CLYBL-K154 acetylation restricted the release of pro-inflammatory factors.

View Article and Find Full Text PDF

Natural phytochemicals reverting M2 to M1 macrophages: A novel alternative Leishmaniasis therapy.

Microb Pathog

January 2025

Immunology lab, Biotechnology & Bioengineering, Indian Institute of Advanced Research, Gandhinagar, Gujarat, 382426, India. Electronic address:

Introduction: Leishmaniasis is a tropical parasitic disease caused by the protozoan Leishmania which remains a significant global health concern with diverse clinical manifestations. Transmitted through the bite of an infected sandfly, its progression depends on the interplay between the host immune response and the parasite. The disease outcome is linked to macrophage polarisation into M1 and M2 phenotypes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!