Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: Pulse-inversion-based tissue harmonic imaging has been utilized for many years because it can effectively eliminate the harmonic leakage and produce low side-lobe. However, the pulse inversion method is sensitive to imaging object movements, which may result in motion artifacts. Spatial resolution and contrast were limited.
Objective: To improve ultrasound image quality by a new pulse-inversion-based tissue harmonic imaging technique.
Methods: Continuous wavelet transform is applied to investigate the correlation between mother wavelet and the received echoes from two opposite pulses. To get a better correlation, a novel mother wavelet named 'tissue wavelet' is designed based on the Khokhlov-Zabolotskaya- Kuznetsov (KZK) wave equation. Radio frequency data were obtained from open Ultrasonix SonixTouch imaging system. Experiments were carried on ultrasonic tissue phantom, human carotid artery and human liver.
Results: The average improvement of lateral spatial resolution is 49.52% compared to pulse-inversion-based tissue second-harmonic Imaging (PIHI). Contrast ratio (CR) and contrast-to-noise ratio (CNR) increased by 5.55 dB and 1.40 dB over PIHI. Tissue wavelet performs better than Mexh and Morl wavelet in lateral spatial resolution, CR, and CNR.
Conclusion: The proposed technique effectively improves the imaging quality in lateral spatial resolution, CR, and CNR.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3233/THC-220403 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!