Background: Extracellular vesicles (EVs) and non-coding RNAs (ncRNAs) are emerging contributors to Alzheimer's disease (AD) pathophysiology. Differential abundance of ncRNAs carried by EVs may provide valuable insights into underlying disease mechanisms. Brain tissue-derived EVs (bdEVs) are particularly relevant, as they may offer valuable insights about the tissue of origin. However, there is limited research on diverse ncRNA species in bdEVs in AD.

Objective: This study explored whether the non-coding RNA composition of EVs isolated from post-mortem brain tissue is related to AD pathogenesis.

Methods: bdEVs from age-matched late-stage AD patients (n = 23) and controls (n = 10) that had been separated and characterized in our previous study were used for RNA extraction, small RNA sequencing, and qPCR verification.

Results: Significant differences of non-coding RNAs between AD and controls were found, especially for miRNAs and tRNAs. AD pathology-related miRNA and tRNA differences of bdEVs partially matched expression differences in source brain tissues. AD pathology had a more prominent association than biological sex with bdEV miRNA and tRNA components in late-stage AD brains.

Conclusions: Our study provides further evidence that EV non-coding RNAs from human brain tissue, including but not limited to miRNAs, may be altered and contribute to AD pathogenesis.

Download full-text PDF

Source
http://dx.doi.org/10.3233/JAD-230872DOI Listing

Publication Analysis

Top Keywords

non-coding rnas
12
small rna
8
brain tissue-derived
8
extracellular vesicles
8
alzheimer's disease
8
valuable insights
8
brain tissue
8
mirna trna
8
brain
5
rna profiles
4

Similar Publications

Epigenetic regulation in hematopoietic stem cells (HSCs) research has emerged as a transformative molecular approach that enhances understanding of hematopoiesis and hematological disorders. This chapter investigates the intricate epigenetic mechanisms that control HSCs function, including deoxyribonucleic acid (DNA) methylation, histone modifications, and chromatin remodeling. It also explores the role of non-coding ribonucleic acid (RNAs) as epigenetic regulators, highlighting how changes in gene expression can occur without alterations to the DNA sequence.

View Article and Find Full Text PDF

Primary brain tumors that were the most severe and aggressive were called glioblastoma multiforme (GBM). Cancers are caused in part by aberrant expression of circular RNA. Often referred to as competitive endogenous RNA (ceRNA), circRNA molecules act as "miRNA sponges" in cells by decreasing the inhibitory impact of miRNA on their target genes and hence raising the expression levels of those genes.

View Article and Find Full Text PDF

Long non-coding RNAs (lncRNAs) have emerged as pivotal regulatory molecules in cancer biology. Among these, long intergenic non-protein coding RNA 02418 (LINC02418), a recently identified lncRNA, has been linked to endometrial cancer (EC), although its function and operational mechanisms are largely unclear. The present investigation aims to elucidate the molecular mechanism through which LINC02418 influences EC pathogenesis.

View Article and Find Full Text PDF

Identification of pain-related long non-coding RNAs for pulpitis prediction.

Clin Oral Investig

January 2025

Department of Endodontics, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, China.

Objectives: We investigated the recently generated RNA-sequencing dataset of pulpitis to identify the potential pain-related lncRNAs for pulpitis prediction.

Materials And Methods: Differential analysis was performed on the gene expression profile between normal and pulpitis samples to obtain pulpitis-related genes. The co-expressed gene modules were identified by weighted gene coexpression network analysis (WGCNA).

View Article and Find Full Text PDF

In most solid tumors, cellular energy metabolism is primarily dominated by aerobic glycolysis, which fulfills the high demand for biomacromolecules at the expense of reduced ATP production efficiency. Elucidation of the mechanisms by which rapidly proliferating malignant cells acquire sufficient energy in this state of inefficient ATP production from glycolysis could enable development of metabolism targeted therapeutic strategies. In this study, we observed a significant association between elevated expression levels of the long non-coding RNA (lncRNA) SNHG17 and unfavorable prognosis in breast cancer (BCa).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!