is an emergent human pathogen causing diverse infections, some of which in the urinary tract. However, little is known about the evolution and maintenance of genetic diversity in this species, the molecular mechanisms and their population dynamics. Here, we characterized the emergence of a novel rdar-like (ough and ry) morphotype which is contingent both on the genetic background and the environment. We show that mutations in either the nitrogen assimilation control gene or the type III fimbriae regulator, , suffice to generate rdar-like colonies. These morphotypes are primarily selected for the reduced inter-cellular aggregation as a result of MrkH loss-of-function which reduces type 3 fimbriae expression. Additionally, these clones also display increased growth rate and reduced biofilm formation. Direct competitions between rdar and wild type clones show that mutations in provide large fitness advantages. In artificial urine, the morphotype is under strong negative frequency-dependent selection and can socially exploit wild type strains. An exhaustive search for mutants in public databases revealed that 8% of natural isolates analysed had a truncated gene many of which were due to insertions of IS elements, including a reported clinical isolate with rdar morphology. These strains were rarely hypermucoid and often isolated from human, mostly from urine and blood. The decreased aggregation of these mutants could have important clinical implications as we hypothesize that such clones could better disperse within the host allowing colonisation of other body sites and potentially leading to systemic infections.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10540941 | PMC |
http://dx.doi.org/10.1093/femsml/uqad038 | DOI Listing |
Alzheimers Dement
December 2024
Indiana University School of Medicine, Indianapolis, IN, USA.
Background: The goal of the TREAT-AD Center is to enable drug discovery by developing assays and providing tool compounds for novel and emerging targets. The role of microglia in neuroinflammation has been implicated in the pathogenesis of Alzheimer's disease (AD). Genome-wide association studies, whole genome sequencing, and gene-expression network analyses comparing normal to AD brain have identified risk and protective variants in genes essential to microglial function.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Indiana University School of Medicine, Indianapolis, IN, USA.
Background: Lyn kinase, a member of the Src family of tyrosine kinases, predominantly phosphorylates ITIM and ITAM motifs linked to immune receptors and adaptor proteins, and is emerging as a target for Alzheimer's disease (AD). The role of Lyn in TREM2-mediated microglial activation and phagocytosis, a critical pathway for clearing Aβ plaques, remains unclear and potent, selective, and brain penetrant Lyn inhibitors are unavailable. In this study, we report the characterization of Lyn kinase inhibitors from the literature as well as the establishment of an advanced virtual screening platform at the IUSM-Purdue-TREAT-AD center to identify new type II Lyn inhibitors suitable as molecular probes.
View Article and Find Full Text PDFBackground: Alzheimer's disease (AD) remains a formidable neurodegenerative challenge, characterized by profound cognitive decline. Despite decades of research, effective disease-modifying therapies are elusive. Recent advances in molecular neuropharmacology have unveiled potential therapeutic targets for AD, offering renewed hope.
View Article and Find Full Text PDFBackground: Neurological disorders are at epidemic levels in the world today. Various proteins are being targeted for the development of novel molecular therapeutics; however, no small-molecule inhibitors have been discovered. Recent studies suggest that there are few molecules in clinical trials for various secretase (α, β, and γ), caspase, and calpain inhibitors.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Good T Cells, Seoul, Mapo-gu, Korea, Republic of (South); YONSEI University, Seoul, Seodaemun-gu, Korea, Republic of (South).
Background: Neurodegenerative diseases, including Alzheimer's disease (AD), have been long thought to be independent of the peripheral immune system, but their pathogenesis status is functionally influenced by various T cell subsets in the periphery. Especially Treg cells are emerging as an important dynamic population in the brain, but the detailed immunological molecular and cellular processes are poorly characterized METHOD: We reported that the cell surface protein Lrig1 is enriched in Treg cells and is an essential regulator of the functions of Treg cells in vitro and in vivo. To evaluate the functional importance of Treg cells in AD pathogenesis, the modulating mAb specific to Lrig1 (GTC 310-01) via intravenous injection route was administered into 5xFAD or 6xTg mice, the genetic mouse model of AD, and the various AD symptoms were investigated.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!