Background: Tumors are characterized by global changes in epigenetic changes such as DNA methylation and histone modifications that are functionally linked to tumor progression. Accordingly, several drugs targeting the epigenome have been proposed for cancer therapy, notably, histone deacetylase inhibitors (HDACi) such as and DNA methyltransferase inhibitors (DNMTi) such as . However, a fundamental challenge with such approaches is the lack of genomic specificity, i.e., the transcriptional changes at different genomic loci can be highly variable thus making it difficult to predict the consequences on the global transcriptome and drug response. For instance, treatment with DNMTi may upregulate the expression of not only a tumor suppressor but also an oncogene leading to unintended adverse effect.

Methods: Given the pre-treatment transcriptome and epigenomic profile of a sample, we assessed the extent of predictability of locus-specific changes in gene expression upon treatment with HDACi using machine learning.

Results: We found that in two cell lines (HCT116 treated with Largazole at 8 doses and RH4 treated with Entinostat at 1μM) where the appropriate data (pre-treatment transcriptome and epigenome as well as post-treatment transcriptome) is available, our model distinguished the post-treatment up versus downregulated genes with high accuracy (up to ROC of 0.89). Furthermore, a model trained on one cell line is applicable to another cell line suggesting generalizability of the model.

Conclusions: Here we present a first assessment of the predictability of genome-wide transcriptomic changes upon treatment with HDACi. Lack of appropriate omics data from clinical trials of epigenetic drugs currently hampers the assessment of applicability of our approach in clinical setting.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10541107PMC
http://dx.doi.org/10.1101/2023.07.20.549955DOI Listing

Publication Analysis

Top Keywords

gene expression
8
pre-treatment transcriptome
8
treatment hdaci
8
changes
6
predicting gene
4
expression changes
4
changes epigenomic
4
epigenomic drug
4
treatment
4
drug treatment
4

Similar Publications

Objectives: This study aimed to comprehensively investigate the molecular landscape of gastric cancer (GC) by integrating various bioinformatics tools and experimental validations.

Methodology: GSE79973 dataset, limma package, STRING, UALCAN, GEPIA, OncoDB, cBioPortal, DAVID, TISIDB, Gene Set Cancer Analysis (GSCA), tissue samples, RT-qPCR, and cell proliferation assay were employed in this study.

Results: Analysis of the GSE79973 dataset identified 300 differentially expressed genes (DEGs), from which COL1A1, COL1A2, CHN1, and FN1 emerged as pivotal hub genes using protein-protein interaction network analysis.

View Article and Find Full Text PDF

Parkinson's disease (PD) is a neurodegenerative disorder that results from the progressive loss of neurons in the brain followed by symptoms such as slowness and rigidity in movement, sleep disorders, dementia and many more. The different mechanisms due to which the neuronal degeneration occurs have been discussed, such as mutation in PD related genes, formation of Lewy bodies, oxidation of dopamine. This review discusses current surgical treatment and gene therapies with novel developments proposed for PD.

View Article and Find Full Text PDF

Rhabdomyosarcoma (RMS) is a family of phenotypically myogenic paediatric cancers consisting of two major subtypes: fusion-positive (FP) RMS, most commonly involving the PAX3::FOXO1 fusion gene, formed by the fusion of paired box 3 (PAX3) and forkhead box O1 (FOXO1) genes, and fusion-negative (FN) RMS, lacking these gene fusions. In humans, DNA methylation patterns distinguish these two subtypes as well as mutation-associated subsets within these subtypes. To investigate the biological factors responsible for these methylation differences, we profiled DNA methylation in RMS tumours derived from genetically engineered mouse models (GEMMs) in which various driver mutations were introduced into different myogenic lineages.

View Article and Find Full Text PDF

Gastric Cancer Models Developed via GelMA 3D Bioprinting Accurately Mimic Cancer Hallmarks, Tumor Microenvironment Features, and Drug Responses.

Small

January 2025

Department of Surgical Oncology and General Surgery Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education The First Affiliated Hospital of China Medical University, Shenyang, 110001, China.

Current in vitro models for gastric cancer research, such as 2D cell cultures and organoid systems, often fail to replicate the complex extracellular matrix (ECM) found in vivo. For the first time, this study utilizes a gelatin methacryloyl (GelMA) hydrogel, a biomimetic ECM-like material, in 3D bioprinting to construct a physiologically relevant gastric cancer model. GelMA's tunable mechanical properties allow for the precise manipulation of cellular behavior within physiological ranges.

View Article and Find Full Text PDF

Background: Distinctive heterogeneity characterizes diffuse large B-cell lymphoma (DLBCL), one of the most frequent types of non-Hodgkin's lymphoma. Mitochondria have been demonstrated to be closely involved in tumorigenesis and progression, particularly in DLBCL.

Objective: The purposes of this study were to identify the prognostic mitochondria-related genes (MRGs) in DLBCL, and to develop a risk model based on MRGs and machine learning algorithms.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!