Metastasis remains the leading cause of cancer deaths worldwide and lung cancer, known for its highly metastatic progression, remains among the most lethal of malignancies. The heterogeneous genomic profile of lung cancer metastases is often unknown. Since different metastatic events can selectively spread to multiple organs, strongly suggests more studies are needed to understand and target these different pathways. Unfortunately, access to the primary driver of metastases, the metastatic cancer cell clusters (MCCCs), remains difficult and limited. These metastatic clusters have been shown to be 100-fold more tumorigenic than individual cancer cells. Capturing and characterizing MCCCs is a key limiting factor in efforts to help treat and ultimately prevent cancer metastasis. Elucidating differentially regulated biological pathways in MCCCs will help uncover new therapeutic drug targets to help combat cancer metastases. We demonstrate a novel, proof of principle technology, to capture MCCCs directly from patients' whole blood. Our platform can be readily tuned for different solid tumor types by combining a biomimicry-based margination effect coupled with immunoaffinity to isolate MCCCs. Adopting a selective capture approach based on overexpressed CD44 in MCCCs provides a methodology that preferentially isolates them from whole blood. Furthermore, we demonstrate a high capture efficiency of more than 90% when spiking MCCC-like model cell clusters into whole blood. Characterization of the captured MCCCs from lung cancer patients by immunofluorescence staining and genomic analyses, suggests highly differential morphologies and genomic profiles., This study lays the foundation to identify potential drug targets thus unlocking a new area of anti-metastatic therapeutics.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10541091 | PMC |
http://dx.doi.org/10.1101/2023.09.19.558270 | DOI Listing |
Clin Oncol (R Coll Radiol)
December 2024
Faculty of Medicine and Health Sciences, University of Antwerp, Prinsstraat 13, 2000, Antwerp, Belgium; Department of Radiation Oncology, Iridium Netwerk, Oosterveldlaan 22, 2610, Antwerp, Belgium. Electronic address:
Aim: Tumour-infiltrating lymphocytes (TILs) represent a promising cancer biomarker. Different TILs, including CD8+, CD4+, CD3+, and FOXP3+, have been associated with clinical outcomes. However, data are lacking regarding the value of TILs for patients receiving radiation therapy (RT).
View Article and Find Full Text PDFMedicine (Baltimore)
January 2025
Department of Respiratory and Critical Care Medicine, Zhongshan City People's Hospital, Zhongshan, Guangdong Province, China.
Rationale: ROS proto-oncogene 1 (ROS1) fusion is a rare but important driver mutation in non-small cell lung cancer, which usually shows significant sensitivity to small molecule tyrosine kinase inhibitors. With the widespread application of next-generation sequencing (NGS), more fusions and co-mutations of ROS1 have been discovered. Non-muscle myosin heavy chain 9 (MYH9) is a rare fusion partner of ROS1 gene as reported.
View Article and Find Full Text PDFJCO Clin Cancer Inform
January 2025
Machine Learning Department, H. Lee Moffit Cancer Center and Research Institute, Tampa, FL.
Purpose: Adaptive radiotherapy accounts for interfractional anatomic changes. We hypothesize that changes in the gross tumor volumes identified during daily scans could be analyzed using delta-radiomics to predict disease progression events. We evaluated whether an auxiliary data set could improve prediction performance.
View Article and Find Full Text PDFJCO Precis Oncol
January 2025
Karmanos Cancer Institute and Department of Oncology, Wayne State University School of Medicine, Detroit, MI.
Purpose: Although lung cancer is one of the most common malignancies, the underlying genetics regarding susceptibility remain poorly understood. We characterized the spectrum of pathogenic/likely pathogenic (P/LP) germline variants within DNA damage response (DDR) genes among lung cancer cases and controls in non-Hispanic Whites (NHWs) and African Americans (AAs).
Materials And Methods: Rare, germline variants in 67 DDR genes with evidence of pathogenicity were identified using the ClinVar database.
PLoS One
January 2025
Cardiovascular Outcomes Research Laboratories (CORELAB), University of California, Los Angeles, Los Angeles, CA, United States of America.
Purpose: Patients with chronic kidney disease (CKD) and end-stage renal disease (ESRD) have been noted to face increased cancer incidence. Yet, the impact of concomitant renal dysfunction on acute outcomes following elective surgery for cancer remains to be elucidated.
Methods: All adult hospitalizations entailing elective resection for lung, esophageal, gastric, pancreatic, hepatic, or colon cancer were identified in the 2016-2020 National Inpatient Sample.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!